Деление на двузначное число



Деление на двузначное число.

В курсе математики 3-го класса (автор Рудницкая В. Н.,Юдачева Т.В.) получили развитие основные методические идеи и подходы в обучении, которые были заложены в основу построения курса 1-2 классов. Учебник 3-го класса также построен на научно-методической основе. Остановлюсь на особенностях изучения темы: «Деление двузначного числа на двузначное».

Известно, что при обучении письменным приемам деления даже на однозначное число, у многих детей возникают трудности при нахождении каждой цифры частного. Ученик задает вопрос по сколько же надо брать, как угадать правильную цифру частного. Ведь четкого алгоритма у него нет. А устная прикидка результата обычно не приносит.

Поделюсь опытом, как я это делаю в случае деления, когда в частном получается одна цифра. Например, (72:12) Однозначное число находится методом подбора. На это уходит немало времени. В своей практике я применяю часто такое объяснение:



72:12

Обращаю внимание на последние цифры делимого и делителя

2:2=1

Но частное не может быть равно 1. Тогда рядом с двойкой делимого слева пишу цифру 1. Получаю пример:



12:2=6, значит, 72: 12=6

Например:

36:12=3

6:2=3

39:13=3

9:3=3

75:25=3

15:5=3

51:17=3

11:7— такой таблицы деления на 7 учащиеся не знают. Тогда вместо 1 в делимом слева пишем число 2. Получаем пример:

21:7=3, значит 51:17=3.

Уважаемые коллеги. Желаю удачи в работе, если моя методическая находка поможет вам достичь желаемых результатов.








sitemap
sitemap