Кун



КУН

СТРУКТУРЫ НАУЧНЫХ РЕВОЛЮЦИЙ Введение

РОЛЬ ИСТОРИИ

История, если её рассматривать не просто как хранилище анекдотов и фактов, расположенных в хронологическом порядке, могла бы стать основой для решительной перестройки тех представлений о науке, которые сложились у нас к настоящему времени. Представления эти возникли (даже у самих учёных) главным образом на основе изучения готовых научных достижений, содержащихся в классических трудах или позднее в учебниках, по которым каждое новое поколение научных работников обучается практике своего дела. Но целью подобных книг по самому их назначению является убедительное и доступное изложение материала. Понятие науки, выведенное из них, вероятно, соответствует действительной практике научного исследования не более, чем сведения, почерпнутые из рекламных проспектов для туристов или из языковых учебников, соответствуют реальному образу национальной культуры. В предлагаемом очерке делается попытка показать, что подобные представления о науке уводят в сторону от её магистральных путей. Его цель состоит в том, чтобы обрисовать хотя бы схематически совершенно иную концепцию науки, которая вырисовывается из исторического подхода к исследованию самой научной деятельности.

Однако даже из изучения истории новая концепция не возникнет, если продолжать поиск и анализ исторических данных главным образом для того, чтобы ответить на вопросы, поставленные в рамках антиисторического стереотипа, сформировавшегося на основе классических трудов и учебников. Например, из этих трудов часто напрашивается вывод, что содержание науки представлено только описываемыми на их страницах наблюдениями, законами и теориями. Как правило, вышеупомянутые книги понимаются таким образом, как будто научные методы просто совпадают с методикой подбора данных для учебника и с логическими операциями, используемыми для связывания этих данных с теоретическими обобщениями учебника. В результате возникает такая концепция науки, в которой содержится значительная доля домыслов и предвзятых представлений относительно её природы и развития.

Если науку рассматривать как совокупность фактов, теорий и методов, собранных в находящихся в обращении учебниках, то в таком случае учёные — это люди, которые более или менее успешно вносят свою лепту в создание этой совокупности. Развитие науки при таком подходе — это постепенный процесс, в котором факты, теории и методы слагаются во всё возрастающий запас достижений, представляющий собой научную методологию и знание. История науки становится при этом такой дисциплиной, которая фиксирует как этот последовательный прирост, так и трудности, которые препятствовали накоплению знания. Отсюда следует, что историк, интересующийся развитием науки, ставит перед собой две главные задачи. С одной стороны, он должен определить, кто и когда открыл или изобрёл каждый научный факт, закон и теорию. С другой стороны, он должен описать и объяснить наличие массы ошибок, мифов и предрассудков, которые препятствовали скорейшему накоплению составных частей современного научного знания. Многие, исследования так и осуществлялись, а некоторые и до сих пор преследуют эти цели.

Однако в последние годы некоторым историкам науки становится всё более и более трудным выполнять те функции, которые им предписывает концепция развития науки через накопление. Взяв на себя роль регистраторов накопления научного знания, они обнаруживают, что чем дальше продвигается исследование, тем труднее, а отнюдь не легче бывает ответить на некоторые вопросы, например о том, когда был открыт кислород или кто первый обнаружил сохранение энергии. Постепенно у некоторых из них усиливается подозрение, что такие вопросы просто неверно сформулированы и развитие науки — это, возможно, вовсе не простое накопление отдельных открытий и изобретений. В то же время этим историкам всё труднее становится отличать «научное» содержание прошлых наблюдений и убеждений от того, что их предшественники с готовностью называли «ошибкой» и «предрассудком». Чем более глубоко они изучают, скажем, аристотелевскую динамику или химию и термодинамику эпохи флогистонной теории, тем более отчётливо чувствуют, что эти некогда общепринятые концепции природы не были в целом ни менее научными, ни более субъективистскими, чем сложившиеся в настоящее время. Если эти устаревшие концепции следует назвать мифами, то оказывается, что источником последних могут быть те же самые методы, а причины их существования оказываются такими же, как и те, с помощью которых в наши дни достигается научное знание. Если, с другой стороны, их следует называть научными, тогда оказывается, что наука включала в себя элементы концепций, совершенно несовместимых с теми, которые она содержит в настоящее время. Если эти альтернативы неизбежны, то историк должен выбрать последнюю из них. Устаревшие теории нельзя в принципе считать ненаучными только на том основании, что они были отброшены. Но в таком случае едва ли можно рассматривать научное развитие как простой прирост знания. То же историческое исследование, которое вскрывает трудности в определении авторства открытий и изобретений, одновременно даёт почву глубоким сомнениям относительно того процесса накопления знаний, посредством которого, как думали раньше, синтезируются все индивидуальные вклады в науку.

Результатом всех этих сомнений и трудностей является начинающаяся сейчас революция в историографии науки. Постепенно, и часто до конца не осознавая этого, историки науки начали ставить вопросы иного плана и прослеживать другие направления в развитии науки, причём эти направления часто отклоняются от кумулятивной модели развития. Они не столько стремятся отыскать в прежней науке непреходящие элементы, которые сохранились до современности, сколько пытаются вскрыть историческую целостность этой науки в тот период, когда она существовала. Их интересует, например, не вопрос об отношении воззрений Галилея к современным научным положениям, а скорее отношение между его идеями и идеями его научного сообщества, то есть идеями его учителей, современников и непосредственных преемников в истории науки. Более того, они настаивают на изучении мнений этого и других подобных сообществ с точки зрения (обычно весьма отличающейся от точки зрения современной науки), признающей за этими воззрениями максимальную внутреннюю согласованность и максимальную возможность соответствия природе. Наука в свете работ, порождаемых этой новой точкой зрения (их лучшим примером могут послужить сочинения Александра Койре), предстаёт как нечто совершенно иное, нежели та схема, которая рассматривалась учёными с позиций старой историографической традиции. Во всяком случае эти исторические исследования наводят на мысль о возможности нового образа науки. Данный очерк преследует цель охарактеризовать хотя бы схематично этот образ, выявляя некоторые предпосылки новой историографии.

Какие аспекты науки выдвинутся на первый план в результате этих усилий? Во-первых, хотя бы в предварительном порядке, следует указать на то, что для многих разновидностей научных проблем недостаточно одних методологических директив самих по себе, чтобы прийти к однозначному и доказательному выводу. Если заставить исследовать электрические или химические явления человека, не знающего этих областей, но знающего, что такое «научный метод» вообще, то он может, рассуждая вполне логически, прийти к любому из множества несовместимых между собой выводов. К какому именно из этих логичных выводов он придёт, по всей вероятности, будет определено его прежним опытом в других областях, которые ему приходилось исследовать ранее, а также его собственным индивидуальным складом ума. Например, какие представления о звёздах он использует для изучения химии или электрических явлений? Какие именно из многочисленных экспериментов, возможных в новой для него области, он предпочтёт выполнить в первую очередь? И какие именно аспекты сложной картины, которая выявится в результате этих экспериментов, будут производить на него впечатление особенно перспективных для выяснения природы химических превращений или сил электрических взаимодействий? Для отдельного учёного по крайней мере, а иногда точно так же и для научного сообщества, ответы на подобные вопросы часто весьма существенно определяют развитие науки. Например, во II разделе мы обратим внимание на то, что ранние стадии развития большинства наук характеризуются постоянным соперничеством между множеством различных представлений о природе. При этом каждое представление в той или иной мере выводится из данных научного наблюдения и предписаний научного метода, и все представления хотя бы в общих чертах не противоречат этим данным. Различаются же между собой школы не отдельными частными недостатками используемых методов (все они были вполне «научными»), а тем, что мы будем называть несоизмеримостью способов въдения мира и практики научного исследования в этом мире. Наблюдение и опыт могут и должны резко ограничить контуры той области, в которой научное рассуждение имеет силу, иначе науки как таковой не будет. Но сами по себе наблюдения и опыт ещё не могут определить специфического содержания науки. Формообразующим ингредиентом убеждений, которых придерживается данное научное сообщество в данное время, всегда являются личные и исторические факторы — элемент по видимости случайный и произвольный.

Наличие этого элемента произвольности не указывает, однако, на то, что любое научное сообщество могло бы заниматься своей деятельностью без некоторой системы общепринятых представлений. Не умаляет он и роли той совокупности фактического материала, на которой основана деятельность сообщества. Едва ли любое эффективное исследование может быть начато прежде, чем научное сообщество решит, что располагает обоснованными ответами на вопросы, подобные следующим: каковы фундаментальные сущности, из которых состоит универсум? Как они взаимодействуют друг с другом и с органами чувств? Какие вопросы учёный имеет право ставить в отношении таких сущностей и какие методы могут быть использованы для их решения? По крайней мере в развитых науках ответы (или то, что полностью заменяет их) на вопросы, подобные этим, прочно закладываются в процессе обучения, которое готовит студентов к профессиональной деятельности и даёт право участвовать в ней. Рамки этого обучения строги и жёстки, и поэтому ответы на указанные вопросы оставляют глубокий отпечаток на научном мышлении индивидуума. Это обстоятельство необходимо серьёзно учитывать при рассмотрении особой эффективности нормальной научной деятельности и при определении направления, по которому она следует в данное время. Рассматривая в III, IV, V разделах нормальную науку, мы поставим перед собой цель в конечном счёте описать исследование как упорную и настойчивую попытку навязать природе те концептуальные рамки, которые дало профессиональное образование. В то же время нас будет интересовать вопрос, может ли научное исследование обойтись без таких рамок, независимо от того, какой элемент произвольности присутствует в их исторических источниках, а иногда и в их последующем развитии.

Однако этот элемент произвольности имеет место и оказывает существенное воздействие на развитие науки, которое будет детально рассмотрено в VI, VII и VIII разделах. Нормальная наука, на развитие которой вынуждено тратить почти всё своё время большинство учёных, основывается на допущении, что научное сообщество знает, каков окружающий нас мир. Многие успехи науки рождаются из стремления сообщества защитить это допущение, и если это необходимо — то и весьма дорогой ценой. Нормальная наука, например, часто подавляет фундаментальные новшества, потому что они неизбежно разрушают её основные установки. Тем не менее до тех пор, пока эти установки сохраняют в себе элемент произвольности, сама природа нормального исследования даёт гарантию, что эти новшества не будут подавляться слишком долго. Иногда проблема нормальной науки, проблема, которая должна быть решена с помощью известных правил и процедур, не поддаётся неоднократным натискам даже самых талантливых членов группы, к компетенции которой она относится. В других случаях инструмент, предназначенный и сконструированный для целей нормального исследования, оказывается неспособным функционировать так, как это предусматривалось, что свидетельствует об аномалии, которую, несмотря на все усилия, не удаётся согласовать с нормами профессионального образования. Таким образом (и не только таким) нормальная наука сбивается с дороги всё время. И когда это происходит — то есть когда специалист не может больше избежать аномалий, разрушающих существующую традицию научной практики, — начинаются нетрадиционные исследования, которые в конце концов приводят всю данную отрасль науки к новой системе предписаний (commitments), к новому базису для практики научных исследований. Исключительные ситуации, в которых возникает эта смена профессиональных предписаний, будут рассматриваться в данной работе как научные революции. Они являются дополнениями к связанной традициями деятельности в период нормальной науки, которые разрушают традиции.

Наиболее очевидные примеры научных революций представляют собой те знаменитые эпизоды в развитии науки, за которыми уже давно закрепилось название революций. Поэтому в IX и Х разделах, где предпринимается непосредственный анализ природы научных революций, мы не раз встретимся с великими поворотными пунктами в развитии науки, связанными с именами Коперника, Ньютона, Лавуазье и Эйнштейна. Лучше всех других достижений, по крайней мере в истории физики, эти поворотные моменты служат образцами научных революций. Каждое из этих открытий необходимо обусловливало отказ научного сообщества от той или иной освящённой веками научной теории в пользу другой теории, несовместимой с прежней. Каждое из них вызывало последующий сдвиг в проблемах, подлежащих тщательному научному исследованию, и в тех стандартах, с помощью которых профессиональный учёный определял, можно ли считать правомерной ту или иную проблему или закономерным то или иное её решение. И каждое из этих открытий преобразовывало научное воображение таким образом, что мы в конечном счёте должны признать это трансформацией мира, в котором проводится научная работа. Такие изменения вместе с дискуссиями, неизменно сопровождающими их, и определяют основные характерные черты научных революций.

Эти характерные черты с особой чёткостью вырисовываются из изучения, скажем, революции, совершённой Ньютоном, или революции в химии. Однако те же черты можно найти (и в этом состоит одно из основных положений данной работы) при изучении других эпизодов в развитии науки, которые не имеют столь явно выраженного революционного значения. Для гораздо более узких профессиональных групп, научные интересы которых затронуло, скажем, создание электромагнитной теории, уравнения Максвелла были не менее революционны, чем теория Эйнштейна, и сопротивление их принятию было ничуть не слабее. Создание других новых теорий по понятным причинам вызывает такую же реакцию со стороны тех специалистов, чью область компетенции они затрагивают. Для этих специалистов новая теория предполагает изменение в правилах, которыми руководствовались учёные в практике нормальной науки до этого времени. Следовательно, новая теория неизбежно отражается на широком фронте научной работы, которую эти специалисты уже успешно завершили. Вот почему она, какой бы специальной ни была область её приложения, никогда не представляет собой (или, во всяком случае, очень редко представляет) просто приращение к тому, что уже было известно. Усвоение новой теории требует перестройки прежней и переоценки прежних фактов, внутреннего революционного процесса, который редко оказывается под силу одному учёному и никогда не совершается в один день. Нет поэтому ничего удивительного в том, что историкам науки бывает весьма затруднительно определить точно дату этого длительного процесса, хотя сама их терминология принуждает видеть в нём некоторое изолированное событие.

Кроме того, создание новых теорий не является единственной категорией событий в науке, вдохновляющих специалистов на революционные преобразования в областях, в которых эти теории возникают. Предписания, управляющие нормальной наукой, определяют не только те виды сущностей, которые включает в себя универсум, но, неявным образом, и то, чего в нём нет. Отсюда следует (хотя эта точка зрения требует более широкого обсуждения), что открытия, подобные открытию кислорода или рентгеновских лучей, не просто добавляют ещё какое-то количество знания в мир учёных. В конечном счёте это действительно происходит, но не раньше, чем сообщество учёных-профессионалов сделает переоценку значения традиционных экспериментальных процедур, изменит своё понятие о сущностях, с которым оно давно сроднилось, и в процессе этой перестройки внесёт видоизменения и в теоретическую схему, сквозь которую оно воспринимает мир. Научный факт и теория в действительности не разделяются друг от друга непроницаемой стеной, хотя подобное разделение и можно встретить в традиционной практике нормальной науки. Вот почему непредвиденные открытия не представляют собой просто введения новых фактов. По этой же причине фундаментально новые факты или теории качественно преобразуют мир учёного в той же мере, в какой количественно обогащают его.

В дальнейшем мы подробнее остановимся на этом расширенном понятии природы научных революций. Известно, что всякое расширение понятия делает неточным его обычное употребление. Тем не менее я и дальше буду говорить даже об отдельных открытиях, как о революционных, поскольку только таким образом можно сравнить их структуру с характером, скажем, коперниканской революции, что и делает, по моему мнению, это расширенное понятие важным. Предыдущее обсуждение показывает, каким образом будут рассмотрены дополняющие друг друга понятия нормальной науки и научных революций в девяти разделах, непосредственно следующих за данным. В остальных частях работы предпринимаются попытки осветить ещё три кардинальных вопроса. В XI разделе путём обсуждения традиций учебников выясняется, почему раньше так трудно бывало констатировать наступление научной революции. XII раздел описывает соперничество между сторонниками старых традиций нормальной науки и приверженцами новых, которое характерно для периода научных революций. Таким образом, рассматривается процесс, который мог бы в какой-то мере заменить в теории научного исследования процедуры подтверждения или фальсификации, тесно связанные с нашим обычным образом науки. Конкуренция между различными группами научного сообщества является единственным историческим процессом, который эффективно приводит к отрицанию некоторой ранее общепринятой теории или к признанию другой. Наконец, в XIII разделе будет рассмотрен вопрос, каким образом развитие науки посредством революций может сочетаться с явно уникальным характером научного прогресса. Однако данный очерк предлагает не более чем основные контуры ответа на поставленный вопрос. Этот ответ зависит от описания основных свойств научного сообщества, для изучения которых потребуется ещё много дополнительных усилий.

Нет никакого сомнения, что некоторых читателей уже интересовал вопрос, могут ли конкретные исторические исследования способствовать концептуальному преобразованию, которое является целью данной работы. Рассуждая формально, можно прийти к выводу, что историческими методами эта цель не может быть достигнута. История, как мы слишком часто говорим, является чисто описательной дисциплиной. А тезисы, предложенные выше, больше напоминают интерпретацию, а иногда имеют и нормативный характер. Кроме того, многие из моих обобщений касаются области социологии науки или социальной психологии учёных, хотя по крайней мере несколько из моих выводов выдержаны в традициях логики или эпистемологии. Может даже показаться, что в предыдущем изложении я нарушил широко признанное в настоящее время разделение между «контекстом открытия» и «контекстом обоснования». Может ли это смешение различных областей науки и научных интересов породить что-либо, кроме путаницы?

Отвлекшись в своей работе от этого и других подобных им различений, я тем не менее вполне сознавал их важность и ценность. В течение многих лет я полагал, что они связаны с природой познания. Даже сейчас я полагаю, что при соответствующем уточнении они могут ещё принести нам немалую пользу. Несмотря на это, результаты моих попыток применить их, даже grosso modo[5] , к реальным ситуациям, в которых вырабатывается, одобряется и воспринимается знание, оказались в высшей степени проблематичными. Эти различения теперь представляются мне скорее составными частями традиционной системы ответов как раз на те вопросы, которые были поставлены специально для получения этих ответов. Прежнее представление о них как об элементарных логических или методологических различениях, которые должны таким образом предвосхитить анализ научного знания, оказывается менее правдоподобным. Получающийся при этом логический круг совсем не обесценивает эти различения. Но они становятся частями некоторой теории и поэтому должны быть подвергнуты такому же тщательному анализу, какой применяется к теориям в других областях науки. Если по своему содержанию они не просто чистые абстракции, тогда это содержание должно быть обнаружено рассмотрением их применительно к данным, которые они призваны освещать. И тогда разве история науки не может предоставить нам обильный материал, к которому будут адекватно применимы наши теории познания?

II НА ПУТИ К НОРМАЛЬНОЙ НАУКЕ

В данном очерке термин «нормальная наука» означает исследование, прочно опирающееся на одно или несколько прошлых научных достижений — достижений, которые в течение некоторого времени признаются определённым научным сообществом как основа для его дальнейшей практической деятельности. В наши дни такие достижения излагаются, хотя и редко в их первоначальной форме, учебниками — элементарными или повышенного типа. Эти учебники разъясняют сущность принятой теории, иллюстрируют многие или все её удачные применения и сравнивают эти применения с типичными наблюдениями и экспериментами. До того как подобные учебники стали общераспространёнными, что произошло в начале XIX столетия (а для вновь формирующихся наук даже позднее), аналогичную функцию выполняли знаменитые классические труды учёных: «Физика» Аристотеля, «Альмагест» Птолемея, «Начала» и «Оптика» Ньютона, «Электричество» Франклина, «Химия» Лавуазье, «Геология» Лайеля и многие другие. Долгое время они неявно определяли правомерность проблем и методов исследования каждой области науки для последующих поколений учёных. Это было возможно благодаря двум существенным особенностям этих трудов. Их создание было в достаточной мере беспрецедентным, чтобы привлечь на длительное время группу сторонников из конкурирующих направлений научных исследований. В то же время они были достаточно открытыми, чтобы новые поколения учёных могли в их рамках найти для себя нерешённые проблемы любого вида.

Достижения, обладающие двумя этими характеристиками, я буду называть далее «парадигмами», термином, тесно связанным с понятием «нормальной науки». Вводя этот термин, я имел в виду, что некоторые общепринятые примеры фактической практики научных исследований — примеры, которые включают закон, теорию, их практическое применение и необходимое оборудование, — всё в совокупности дают нам модели, из которых возникают конкретные традиции научного исследования. Таковы традиции, которые историки науки описывают под рубриками «астрономия Птолемея (или Коперника)», «аристотелевская (или ньютонианская) динамика», «корпускулярная (или волновая) оптика» и так далее. Изучение парадигм, в том числе парадигм гораздо более специализированных, чем названные мною здесь в целях иллюстрации, является тем, что главным образом и подготавливает студента к членству в том или ином научном сообществе. Поскольку он присоединяется таким образом к людям, которые изучали основы их научной области на тех же самых конкретных моделях, его последующая практика в научном исследовании не часто будет обнаруживать резкое расхождение с фундаментальными принципами. Учёные, научная деятельность которых строится на основе одинаковых парадигм, опираются на одни и те же правила и стандарты научной практики. Эта общность установок и видимая согласованность, которую они обеспечивают, представляют собой предпосылки для нормальной науки, то есть для генезиса и преемственности в традиции того или иного направления исследования.

Поскольку в данном очерке понятие парадигмы будет часто заменять собой целый ряд знакомых терминов, необходимо особо остановиться на причинах введения этого понятия. Почему то или иное конкретное научное достижение как объект профессиональной приверженности первично по отношению к различным понятиям, законам, теориям и точкам зрения, которые могут быть абстрагированы из него? В каком смысле общепризнанная парадигма является основной единицей измерения для всех изучающих процесс развития науки? Причём эта единица как некоторое целое не может быть полностью сведена к логически атомарным компонентам, которые могли бы функционировать вместо данной парадигмы. Когда мы столкнёмся с такими проблемами в V разделе, ответы на эти и подобные им вопросы окажутся основными для понимания как нормальной науки, так и связанного с ней понятия парадигмы. Однако это более абстрактное обсуждение будет зависеть от предварительного рассмотрения примеров нормальной деятельности в науке или функционирования парадигм. В частности, оба эти связанные друг с другом понятия могут быть прояснены с учётом того, что возможен вид научного исследования без парадигм или по крайней мере без столь определённых и обязательных парадигм, как те, которые были названы выше. Формирование парадигмы и появление на её основе более эзотерического типа исследования является признаком зрелости развития любой научной дисциплины.

Если историк проследит развитие научного знания о любой группе родственных явлений назад, в глубь времён, то он, вероятно, столкнётся с повторением в миниатюре той модели, которая иллюстрируется в настоящем очерке примерами из истории физической оптики. Современные учебники физики рассказывают студентам, что свет представляет собой поток фотонов, то есть квантово-механических сущностей, которые обнаруживают некоторые волновые свойства и в то же время некоторые свойства частиц. Исследование протекает соответственно этим представлениям или, скорее, в соответствии с более разработанным и математизированным описанием, из которого выводится это обычное словесное описание. Данное понимание света имеет, однако, не более чем полувековую историю. До того как оно было развито Планком, Эйнштейном и другими в начале нашего века, в учебниках по физике говорилось, что свет представляет собой распространение поперечных волн. Это понятие являлось выводом из парадигмы, которая восходит в конечном счёте к работам Юнга и Френеля по оптике, относящимся к началу XIX столетия. В то же время и волновая теория была не первой, которую приняли почти все исследователи оптики. В течение XVIII века парадигма в этой области основывалась на «Оптике» Ньютона, который утверждал, что свет представляет собой поток материальных частиц. В то время физики искали доказательство давления световых частиц, ударяющихся о твёрдые тела; ранние же приверженцы волновой теории вовсе не стремились к этому[6].

Эти преобразования парадигм физической оптики являются научными революциями, и последовательный переход от одной парадигмы к другой через революцию является обычной моделью развития зрелой науки. Однако эта модель не характерна для периода, предшествующего работам Ньютона, и мы должны здесь попытаться выяснить, в чём заключается причина этого различия. От глубокой древности до конца XVII века не было такого периода, для которого была бы характерна какая-либо единственная, общепринятая точка зрения на природу света. Вместо этого было множество противоборствующих школ и школок, большинство из которых придерживались той или другой разновидности эпикурейской, аристотелевской или платоновской теории. Одна группа рассматривала свет как частицы, испускаемые материальными телами; для другой свет был модификацией среды, которая находилась между телом и глазом; ещё одна группа объясняла свет в терминах взаимодействия среды с излучением самих глаз. Помимо этих были другие варианты и комбинации этих объяснений. Каждая из соответствующих школ черпала силу в некоторых частных метафизических положениях, и каждая подчёркивала в качестве парадигмальных наблюдений именно тот набор свойств оптических явлений, который её теория могла объяснить наилучшим образом. Другие наблюдения имели дело с разработками ad hoc[7] или откладывали нерешённые проблемы для дальнейшего исследования[8].

В различное время все эти школы внесли значительный вклад в совокупность понятий, явлений и технических средств, из которых Ньютон составил первую более или менее общепринятую парадигму физической оптики. Любое определение образа учёного, под которое не подходят по крайней мере наиболее творчески мыслящие члены этих различных школ, точно так же исключает и их современных преемников. Представители этих школ были учёными. И всё же из любого критического обзора физической оптики до Ньютона можно вполне сделать вывод, что, хотя исследователи данной области были учёными, чистый результат их деятельности не в полной мере можно было бы назвать научным. Не имея возможности принять без доказательства какую-либо общую основу для своих научных убеждений, каждый автор ощущал необходимость строить физическую оптику заново, начиная с самых основ. В силу этого он выбирал эксперименты и наблюдения в поддержку своих взглядов относительно свободно, ибо не было никакой стандартной системы методов или явлений, которую каждый пишущий работу по оптике должен был применять и объяснять. В таких условиях авторы трудов по оптике апеллировали к представителям других школ ничуть не меньше, чем к самой природе. Такое положение нередко встречается во многих областях научного творчества и по сей день; в нём нет ничего такого, что делало бы его несовместимым с важными открытиями и изобретениями. Однако это не та модель развития науки, которой физическая оптика стала следовать после Ньютона и которая вошла в наши дни в обиход и других естественных наук.

История исследования электрических явлений в первой половине XVIII века даёт более конкретный и более известный пример того, каким образом развивается наука, прежде чем выработает свою первую всеми признанную парадигму. В течение этого периода было почти столько же мнений относительно природы электричества, сколько и выдающихся экспериментаторов в этой области, включая таких, как Хауксби, Грей, Дезагюлье, Дюфе, Ноллет, Уотсон, Франклин и другие. Все их многочисленные концепции электричества имели нечто общее — в известной степени они вытекали из того или иного варианта корпускулярно-механической философии, которой руководствовались все научные исследования того времени. Кроме того, все они были компонентами действительно научных теорий, — теорий, которые частично были рождены экспериментом и наблюдением и которые отчасти сами детерминировали выбор и интерпретацию дальнейших проблем, подлежащих исследованию. Несмотря на то что все эксперименты были направлены на изучение электрических явлений и большинство экспериментаторов были знакомы с работами своих коллег, их теории имели друг с другом лишь весьма общее сходство[9].

Одна ранняя группа теорий, следуя практике XVII—XVIII веков, рассматривала притяжение и электризацию трением как основные электрические явления. Эта группа была склонна истолковывать отталкивание как вторичный эффект, обусловленный некоторым видом механического взаимодействия, и, кроме того, откладывать насколько возможно как обсуждение, так и систематическое исследование открытого Греем эффекта электрической проводимости. Другие «электрики» (как они сами себя называли) рассматривали притяжение и отталкивание как в равной мере элементарные проявления электричества и соответственно модифицировали свои теории и исследования. (Фактически эта группа была удивительно немногочисленна; даже теория Франклина никогда полностью не учитывала взаимное отталкивание двух отрицательно заряженных тел.) Но и эти исследователи, как и члены первой группы, сталкивались со многими трудностями при анализе и сопоставлении всех (кроме самых простейших) явлений, связанных с электропроводностью. Однако электропроводность стала исходной точкой ещё для одной, третьей группы исследователей, склонной говорить об электричестве как о «флюиде», который мог протекать через проводники. Эту точку зрения они противопоставляли представлению об «истекании», источником которого служат тела, не проводящие электричества. Но в то же время этой группе также трудно было согласовать свою теорию с рядом эффектов отталкивания и притяжения. Только благодаря работам Франклина и его ближайших последователей была создана теория, которая смогла, можно сказать, с одинаковой лёгкостью учесть почти все без исключения эффекты и, следовательно, могла обеспечить и действительно обеспечила последующее поколение «электриков» общей парадигмой для их исследований.

Если не считать дисциплин, подобных математике и астрономии, в которых первые прочные парадигмы относятся к периоду их предыстории, а также тех дисциплин, которые, подобно биохимии, возникают в результате разделения и перестройки уже сформировавшихся отраслей знания, ситуации, описанные выше, типичны в историческом плане. Поэтому и в дальнейшем я буду использовать это, может быть, не очень удачное упрощение, то есть символизировать значительное историческое событие из истории науки единственным и в известной мере произвольно выбранным именем (например, Ньютон или Франклин). При этом я полагаю, что фундаментальные разногласия, подобные рассмотренным, характеризовали, например, учение о движении до Аристотеля и статику до Архимеда, учение о теплоте до Блэка, химию до Бойля и Бургаве или историческую геологию до Геттона. В таких разделах биологии, как, например, учение о наследственности, первые парадигмы появились в самое последнее время; и остаётся полностью открытым вопрос, имеются ли такие парадигмы в каких-либо разделах социологии. История наводит на мысль, что путь к прочному согласию в исследовательской работе необычайно труден.

Тем не менее история указывает и на некоторые причины трудностей, встречающихся на этом пути. За неимением парадигмы или того, что предположительно может выполнить её роль, все факты, которые могли бы, по всей вероятности, иметь какое-то отношение к развитию данной науки, выглядят одинаково уместными. В результате первоначальное накопление фактов является деятельностью, гораздо в большей мере подверженной случайностям, чем деятельность, которая становится привычной в ходе последующего развития науки. Более того, если нет причины для поисков какой-то особой формы более специальной информации, то накопление фактов в этот ранний период обычно ограничивается данными, всегда находящимися на поверхности. В результате этого процесса образуется некоторый фонд фактов, часть из которых доступна простому наблюдению и эксперименту, а другие являются более эзотерическими и заимствуются из таких уже ранее существовавших областей практической деятельности, как медицина, составление календарей или металлургия. Поскольку эти практические области являются легко доступным источником фактов, которые не могут быть обнаружены поверхностным наблюдением, техника часто играла жизненно важную роль в возникновении новых наук.

Но хотя этот способ накопления фактов был существенным для возникновения многих важных наук, каждый, кто ознакомится, например, с энциклопедическими работами Плиния или с естественными «историями» Бэкона, написанными в XVII веке, обнаружит, что данный способ давал весьма путаную картину. Даже сомнительно называть подобного рода литературу научной. Бэконовские «истории» теплоты, цвета, ветра, горного дела и так далее наполнены информацией, часть которой малопонятна. Но главное, что здесь факты, которые позднее оказались объяснёнными (например, нагревание с помощью смешивания), поставлены в один ряд с другими (например, нагревание кучи навоза), которые в течение определённого времени оставались слишком сложными, чтобы их можно было включить в какую бы то ни было целостную теорию[10]. Кроме того, поскольку любое описание неизбежно неполно, древняя естественная история обычно упускает в своих неимоверно обстоятельных описаниях как раз те детали, в которых позднее учёными будет найден ключ к объяснению. Например, едва ли хотя бы одна из ранних «историй» электричества упоминает о том, что мелкие частички, притянутые натёртой стеклянной палочкой, затем опадают. Этот эффект казался поначалу механическим, а не электрическим[11]. Более того, поскольку само собирание случайных наблюдений не оставляло времени и не давало метода для критики, естественные истории часто совмещали описания вроде тех, которые приведены выше, с другими, скажем описаниями нагревания посредством антиперистасиса (или охлаждения), которые сейчас ни в какой мере не подтверждаются[12]. Лишь очень редко, как, например, в случае античной статики, динамики и геометрической оптики, факты, собранные при столь незначительном руководстве со стороны ранее созданной теории, достаточно определённо дают основу для возникновения начальной парадигмы.

Такова обстановка, которая создаёт характерные для ранних стадий развития науки черты школ. Никакую естественную историю нельзя интерпретировать, если отсутствует хотя бы в неявном виде переплетение теоретических и методологических предпосылок, принципов, которые допускают отбор, оценку и критику фактов. Если такая основа присутствует уже в явной форме в собрании фактов (в этом случае мы располагаем уже чем-то большим, нежели просто факты), она должна быть подкреплена извне, может быть с помощью обыденной философии, или посредством другой науки, или посредством установок личного или общественно-исторического плана. Не удивительно поэтому, что на ранних стадиях развития любой науки различные исследователи, сталкиваясь с одними и теми же категориями явлений, далеко не всегда одни и те же специфические явления описывают и интерпретируют одинаково. Можно признать удивительным и даже в какой-то степени уникальным именно для науки как особой области, что такие первоначальные расхождения впоследствии исчезают.

Ибо они действительно исчезают, сначала в весьма значительной степени, а затем и окончательно. Более того, их исчезновение обычно вызвано триумфом одной из допарадигмальных школ, которая в силу её собственных характерных убеждений и предубеждений делает упор только на некоторой особой стороне весьма обширной по объёму и бедной по содержанию информации. Те исследователи электрических явлений, которые считали электричество флюидом и, следовательно, делали особое ударение на проводимости, дают этому великолепный пример. Руководствуясь этой концепцией, которая едва ли могла охватить известное к этому времени многообразие эффектов притяжения и отталкивания, некоторые из них выдвигали идею заключения «электрической жидкости» в сосуд. Непосредственным результатом их усилий стало создание лейденской банки, прибора, которого никогда не сделал бы человек, исследующий природу вслепую или наугад, и который был создан по крайней мере двумя исследователями в начале 40-х годов XVIII века фактически независимо друг от друга[13]. Почти с самого начала исследований в области электричества Франклин особенно заинтересовался объяснением этого странного и многообещающего вида специальной аппаратуры. Его успех в этом объяснении дал ему самые эффективные аргументы, которые сделали его теорию парадигмой, хотя и такой, которая всё ещё была неспособна полностью охватить все известные случаи электрического отталкивания[14]. Принимаемая в качестве парадигмы теория должна казаться лучшей, чем конкурирующие с ней другие теории, но она вовсе не обязана (и фактически этого никогда не бывает) объяснять все факты, которые могут встретиться па её пути.

Ту же роль, которую сыграла флюидная теория электричества в судьбе подгруппы учёных, придерживающихся этой теории, сыграла позднее и парадигма Франклина в судьбе всей группы учёных, исследовавших электрические явления. Благодаря этой теории можно было заранее предположить, какие эксперименты стоит проводить и какие эксперименты не могли иметь существенного значения, поскольку были направлены на вторичные или слишком сложные проявления электричества. Только парадигма могла сделать такую работу по отбору экспериментов более эффективной. Частично это объясняется тем, что прекращение бесплодных споров между различными школами пресекало и бесконечные дискуссии по поводу основных принципов. Кроме того, уверенность в том, что они на правильном пути, побуждала учёных к более тонкой, эзотерической работе, к исследованию, которое требовало много сил и времени[15]. Не отвлекаясь на изучение каждого электрического явления, сплотившаяся группа исследователей смогла затем сосредоточить внимание на более детальном изучении избранных явлений. Кроме того, она получила возможность для создания многих специальных приборов и более систематического, целенаправленного их использования, чем кто-либо из учёных, делавших это ранее. Соответственно возрастала эффективность и продуктивность исследований по электричеству, подтверждая тем самым возможность распространить на общество проницательное методологическое изречение Фрэнсиса Бэкона: «Истина всё же скорее возникает из заблуждения, чем из неясности…»[16]

Природу этих в высшей степени направленных, основанных на парадигме исследований мы рассмотрим в следующем разделе. Однако, забегая вперёд, необходимо хотя бы кратко отметить, каким образом возникновение парадигмы воздействует на структуру группы, разрабатывающей ту или иную область науки. Когда в развитии естественной науки отдельный учёный или группа исследователей впервые создают синтетическую теорию, способную привлечь большинство представителей следующего поколения исследователей, прежние школы постепенно исчезают. Исчезновение этих школ частично обусловлено обращением их членов к новой парадигме. Но всегда остаются учёные, верные той или иной устаревшей точке зрения. Они просто выпадают из дальнейших совокупных действий представителей их профессии, которые с этого времени игнорируют все их усилия. Новая парадигма предполагает и новое, более чёткое определение области исследования. И те, кто не расположен или не может приспособить свою работу к новой парадигме, должны перейти в другую группу, в противном случае они обречены на изоляцию[17]. Исторически они так и оставались зачастую в лабиринтах философии, которая в своё время дала жизнь стольким специальным наукам. Эти соображения наводят на мысль, что именно благодаря принятию парадигмы группа, интересовавшаяся ранее изучением природы из простого любопытства, становится профессиональной, а предмет её интереса превращается в научную дисциплину. В науке (правда, не в таких областях, как медицина, технические науки, юриспруденция, принципиальное raison d’être[18] которых обеспечено социальной необходимостью) с первым принятием парадигмы связаны создание специальных журналов, организация научных обществ, требования о выделении специального курса в академическом образовании. По крайней мере так обстоит дело в течение последних полутора веков, с тех пор, как научная специализация впервые начала приобретать институциональную форму, и до настоящего времени, когда степень специализации стала вопросом престижа учёных.

Более чёткое определение научной группы имеет и другие последствия. Когда отдельный учёный может принять парадигму без доказательства, ему не приходится в своей работе перестраивать всю область заново, начиная с исходных принципов, и оправдывать введение каждого нового понятия. Это можно предоставить авторам учебников. Однако при наличии учебника творчески мыслящий учёный может начать своё исследование там, где оно остановилось, и, таким образом, сосредоточиться исключительно на самых тонких и эзотерических явлениях природы, которые интересуют его группу. Поступая так, учёный участвует прежде всего в изменении методов, эволюция которых слишком мало изучена, но современные результаты их использования очевидны для всех и сковывают инициативу многих. Результаты его исследования не будут больше излагаться в книгах, адресованных, подобно «Экспериментам… по электричеству» Франклина или «Происхождению видов» Дарвина, всякому, кто заинтересуется предметом их исследования. Вместо этого они, как правило, выходят в свет в виде коротких статей, предназначенных только для коллег-профессионалов, только для тех, кто предположительно знает парадигму и оказывается в состоянии читать адресованные ему статьи.

В современных естественных науках книги представляют собой либо учебники, либо ретроспективные размышления о том или ином аспекте научной жизни. Профессиональная репутация учёного, который пишет книгу, может не повыситься, а упасть вопреки его ожиданиям. Лишь на ранних, допарадигмальных стадиях развития наук книга обычно выражала то же самое отношение к профессиональным достижениям, которое она всё ещё сохраняет в некоторых областях творчества. И только в тех областях, где книга наряду со статьями или без них остаётся по-прежнему средством коммуникации между исследователями, пути профессионализации обрисовываются столь расплывчато, что любитель может льстить себя надеждой, будто он следит за прогрессом, читая подлинные сообщения учёных-исследователей. В математике и астрономии исследовательские сообщения перестали быть понятными для широкой аудитории уже в античности. В динамике исследование приблизилось к эзотерическому типу в конце средних веков и вновь обрело более или менее понятную для всех форму, правда на короткий период, в начале XVII века, когда новая парадигма заменила ту парадигму, которой динамика руководствовалась в эпоху средневековья. Исследования электрических явлений потребовали их истолкования для непрофессионалов к концу XVIII века, а большинство других областей физической науки перестали быть понятными для широкого читателя в XIX веке. В течение тех же двух столетий подобные преобразования можно было наблюдать и в различных разделах биологических наук. В социальных науках с ними можно встретиться и сегодня. Хотя становятся привычными и вполне уместными сожаления по поводу углубления пропасти, всё больше разделяющей профессионального учёного и его коллег в других областях, слишком мало внимания уделяется взаимосвязи между этим процессом углубления пропасти и внутренними механизмами развития науки.

С доисторических времён одна наука вслед за другой переходили границу между тем, что историк может назвать предысторией данной науки как науки, и собственно её историей. Эти переходы в стадии зрелости редко бывают такими внезапными и такими явными, как я представил их в своём вынужденно схематическом изложении. Но с исторической точки зрения они не были и постепенными и не могут рассматриваться как соизмеримые по длительности с общим развитием тех областей науки, в пределах которых они совершаются. Те учёные, которые писали об электричестве в течение первых четырёх десятилетий XVIII века, располагали значительно большей информацией об электрических явлениях, чем их предшественники в XVI— XVII веках. В течение полувека после 1740 года к спискам этих явлений было добавлено лишь немного данных. Тем не менее в ряде важных моментов работы Кавендиша, Кулона, Вольты по электричеству в последней трети XVIII века выглядят более ушедшими вперёд по сравнению с работами Грея, Дюфе и даже Франклина, чем работы этих первооткрывателей в области электричества начала XVIII века по сравнению с подобными исследованиями в XVI веке[19]. Где-то между 1740 и 1780 годами исследователи электрических явлений впервые оказались в состоянии принять основания своей области без доказательств. С этого момента они охотнее обращались к более конкретным и специальным проблемам и всё чаще стали публиковать результаты своих исследований в статьях, предназначенных для других исследователей в области электричества, предпочитая такой способ коммуникации книгам, адресованным широкому кругу читателей. Образовав особую научную группу, они достигли того, чего добились астрономы античного мира, специалисты в области кинематики в средние века, физической оптики в конце XVII века и исторической геологии в начале XIX столетия. Иными словами, они пришли к парадигме, которая оказалась способной направлять исследование всей группы в целом. Трудно найти другой критерий (если не считать преимуществ ретроспективного взгляда), который бы так ясно и непосредственно подтверждал, что данная отрасль знаний стала наукой.

III

ПРИРОДА НОРМАЛЬНОЙ НАУКИ

Какова же тогда природа более профессионального и эзотерического исследования, которое становится возможным после принятия группой учёных единой парадигмы? Если парадигма представляет собой работу, которая сделана однажды и для всех, то спрашивается, какие проблемы она оставляет для последующего решения данной группе? Эти вопросы будут представляться тем более безотлагательными, если мы укажем, в каком отношении использованные нами до сих пор термины могут привести к недоразумению. В своём установившемся употреблении понятие парадигмы означает принятую модель или образец; именно этот аспект значения слова «парадигма» за неимением лучшего позволяет мне использовать его здесь. Но, как вскоре будет выяснено, смысл слов «модель» и «образец», подразумевающих соответствие объекту, не полностью покрывает определение парадигмы. В грамматике, например, «amo, amas, amat»[20] есть парадигма, поскольку эту модель можно использовать как образец, по которому спрягается большое число латинских глаголов: например, таким же образом можно образовать формы «laudo, laudas, laudat»[21] и т. д. В этом стандартном применении парадигма функционирует в качестве разрешения на копирование примеров, каждый из которых может в принципе её заменить. В науке, с другой стороны, парадигма редко является объектом копирования. Вместо этого, подобно принятому судом решению в рамках общего закона, она представляет собой объект для дальнейшей разработки и конкретизации в новых или более трудных условиях.

Чтобы увидеть, как это оказывается возможным, нам следует представить, насколько ограниченной и по охвату и по точности может быть иногда парадигма в момент своего появления. Парадигмы приобретают свой статус потому, что их использование приводит к успеху скорее, чем применение конкурирующих с ними способов решения некоторых проблем, которые исследовательская группа признаёт в качестве наиболее остро стоящих. Однако успех измеряется не полной удачей в решении одной проблемы и не значительной продуктивностью в решении большого числа проблем. Успех парадигмы, будь то аристотелевский анализ движения, расчёты положения планет у Птолемея, применение весов Лавуазье или математическое описание электромагнитного поля Максвеллом, вначале представляет собой в основном открывающуюся перспективу успеха в решении ряда проблем особого рода. Заранее неизвестно исчерпывающе, каковы будут эти проблемы. Нормальная наука состоит в реализации этой перспективы по мере расширения частично намеченного в рамках парадигмы знания о фактах. Реализация указанной перспективы достигается также благодаря всё более широкому сопоставлению этих фактов с предсказаниями на основе парадигмы и благодаря дальнейшей разработке самой парадигмы.

Немногие из тех, кто фактически не принадлежит к числу исследователей в русле зрелой науки, осознают, как много будничной работы такого рода осуществляется в рамках парадигмы или какой привлекательной может оказаться такая работа. А это следовало бы понимать. Именно наведением порядка занято большинство учёных в ходе их научной деятельности. Вот это и составляет то, что я называю здесь нормальной наукой. При ближайшем рассмотрении этой деятельности (в историческом контексте или в современной лаборатории) создаётся впечатление, будто бы природу пытаются «втиснуть» в парадигму, как в заранее сколоченную и довольно тесную коробку. Цель нормальной науки ни в коей мере не требует предсказания новых видов явлений: явления, которые не вмещаются в эту коробку, часто, в сущности, вообще упускаются из виду. Учёные в русле нормальной науки не ставят себе цели создания новых теорий, обычно к тому же они нетерпимы и к созданию таких теорий другими[22]. Напротив, исследование в нормальной науке направлено на разработку тех явлений и теорий, существование которых парадигма заведомо предполагает.

Возможно, что это следует отнести к числу недостатков. Конечно, области, исследуемые нормальной наукой, невелики, и всё предприятие нормального исследования, которое мы сейчас обсуждаем, весьма ограниченно. Но эти ограничения, рождающиеся из уверенности в парадигме, оказываются существенными для развития науки. Концентрируя внимание на небольшой области относительно эзотерических проблем, парадигма заставляет учёных исследовать некоторый фрагмент природы так детально и глубоко, как это было бы немыслимо при других обстоятельствах. И нормальная наука располагает собственным механизмом, позволяющим ослабить эти ограничения, которые дают о себе знать в процессе исследования всякий раз, когда парадигма, из которой они вытекают, перестаёт служить эффективно. С этого момента учёные начинают менять свою тактику. Изменяется и природа исследуемых ими проблем. Однако до этого момента, пока парадигма успешно функционирует, профессиональное сообщество будет решать проблемы, которые его члены едва ли могли вообразить и, во всяком случае, никогда не могли бы решить, если бы не имели парадигмы. И по крайней мере часть этих достижений всегда остаётся в силе.

Чтобы показать более ясно, чту представляет собой нормальное, или основанное на парадигме, исследование, я попытаюсь классифицировать и иллюстрировать проблемы, которые в принципе подразумевает нормальная наука. Для удобства я оставлю в стороне теоретическую деятельность и начну со стадии накопления фактов, то есть с экспериментов и наблюдений, описываемых в специальных журналах, посредством которых учёные информируют коллег о результатах своих постоянных исследований. О каких аспектах природы учёные обычно сообщают? Что определяет их выбор? И, поскольку бульшая часть научных наблюдений поглощает много времени, денег и требует специального оснащения, естественно поставить вопрос, какие цели преследует учёный, доводя этот выбор до практического завершения?

Я думаю, что обычно бывает только три центральных момента в научном исследовании некоторой области фактов; их невозможно резко отделить друг от друга, а иногда они вообще неразрывны. Прежде всего имеется класс фактов, которые, как об этом свидетельствует парадигма, особенно показательны для вскрытия сути вещей. Используя эти факты для решения проблем, парадигма порождает тенденцию к их уточнению и к их распознаванию во всё более широком круге ситуаций. В различные периоды такого рода значительные фактические уточнения заключались в следующем: в астрономии — в определении положения звёзд и звёздных величин, периодов затмения двойных звёзд и планет; в физике — в вычислении удельных весов и сжимаемостей материалов, длин волн и спектральных интенсивностей, электропроводностей и контактных потенциалов; в химии — в определении состава веществ и атомных весов, в установлении точек кипения и кислотностей растворов, в построении структурных формул и измерении оптической активности. Попытки увеличить точность и расширить круг известных фактов, подобных тем, которые были названы, занимают значительную часть литературы, посвящённой экспериментам и наблюдениям в науке. Неоднократно для этих целей создавалась сложная специальная аппаратура, а изобретение, конструирование и сооружение этой аппаратуры требовали выдающихся талантов, много времени и значительных финансовых затрат. Синхротроны и радиотелескопы представляют собой лишь самые новые примеры размаха, с которым продвигается вперёд работа исследователей, если парадигма гарантирует им значительность фактов, поисками которых они заняты. От Тихо Браге до Э. О. Лоренца некоторые учёные завоевали себе репутацию великих не за новизну своих открытий, а за точность, надёжность и широту методов, разработанных ими для уточнения ранее известных категорий фактов.

Второй, обычный, но более ограниченный класс фактических определений относится к тем фактам, которые часто, хотя и не представляют большого интереса сами по себе, могут непосредственно сопоставляться с предсказаниями парадигмальной теории. Как мы вскоре увидим, когда перейдём от экспериментальных к теоретическим проблемам нормальной науки, существует немного областей, в которых научная теория, особенно если она имеет преимущественно математическую форму, может быть непосредственно соотнесена с природой. Так общая теория относительности Эйнштейна имеет не более чем три таких области[23]. Более того, даже в тех областях, где применение теории возможно, часто требуется теоретическая аппроксимация, которая сильно ограничивает ожидаемое соответствие. Улучшение этого соответствия или поиски новых областей, в которых можно продемонстрировать полное соответствие, требует постоянного совершенствования мастерства и возбуждает фантазию экспериментатора и наблюдателя. Специальные телескопы для демонстрации предсказания Коперником годичного параллакса, машина Атвуда, изобретённая почти столетие спустя после выхода в свет «Начал» Ньютона и дающая впервые ясную демонстрацию второго закона Ньютона; прибор Фуко для доказательства того, что скорость света в воздухе больше, чем в воде; гигантский сцинтилляционный счётчик, созданный для доказательства существования нейтрино, — все эти примеры специальной аппаратуры и множество других подобных им иллюстрируют огромные усилия и изобретательность, направленные на то, чтобы ставить теорию и природу во всё более тесное соответствие друг с другом[24]. Эти попытки доказать такое соответствие составляют второй тип нормальной экспериментальной деятельности, и этот тип зависит от парадигмы даже более явно, чем первый. Существование парадигмы заведомо предполагает, что проблема разрешима. Часто парадигмальная теория прямо подразумевается в создании аппаратуры, позволяющей решить проблему. Например, без «Начал» измерения, которые позволяет произвести машина Атвуда, не значили бы ровно ничего.

Для исчерпывающего представления о деятельности по накоплению фактов в нормальной науке следует указать, как я думаю, ещё на третий класс экспериментов и наблюдений. Он представляет эмпирическую работу, которая предпринимается для разработки парадигмальной теории в целях разрешения некоторых оставшихся неясностей и улучшения решения проблем, которые ранее были затронуты лишь поверхностно. Этот класс является наиболее важным из всех других, и описание его требует аналитического подхода. В более математизированных науках некоторые эксперименты, целью которых является разработка парадигмы, направлены на определение физических констант. Например, труд Ньютона указывал, что сила притяжения между двумя единичными массами при расстоянии между ними, равном единице, должна быть одинаковой для всех видов материи в любом месте пространства. Но собственные проблемы, поставленные в книге Ньютона, могли быть разрешены даже без подсчёта величины этого притяжения, то есть универсальной гравитационной постоянной, и никто в течение целого столетия после выхода в свет «Начал» не изобрёл прибора, с помощью которого можно было бы определить эту величину.

Знаменитый метод определения, предложенный в конце 90-х годов XVIII века Кавендишем, также не был совершенным. Поскольку гравитационная постоянная занимала центральное место в физической теории, многие выдающиеся экспериментаторы неоднократно направляли свои усилия на уточнение её значения[25]. В качестве других примеров работы в этом направлении можно упомянуть определения астрономических постоянных, числа Авогадро, коэффициента Джоуля, заряда электрона и т. д. Очень немногие из этих тщательно подготовленных попыток могли бы быть предприняты, и ни одна из них не принесла бы плодов без парадигмальной теории, которая сформулировала проблему и гарантировала существование определённого решения.

Усилия, направленные на разработку парадигмы, не ограничиваются, однако, определением универсальных констант. Они могут быть нацелены, например, на открытие количественных законов: закон Бойля, связывающий давление газа с его объёмом, закон электрического притяжения Кулона и формула Джоуля, связывающая теплоту, излучаемую проводником, по которому течёт ток, с силой тока и сопротивлением, — все они охватываются этой категорией. Может быть, тот факт, что парадигма является предпосылкой открытия подобного типа законов, не достаточно очевиден. Часто приходится слышать, что эти законы открываются посредством одних лишь измерений, предпринятых ради самих этих законов без всяких теоретических предписаний. Однако история никак не подтверждает применение такого чисто бэконовского метода. Эксперименты Бойля были бы немыслимы, пока воздух рассматривался как упругий флюид, к которому можно применять понятие гидростатики (а если бы их и можно было бы поставить, то они получили бы другую интерпретацию или не имели бы никакой интерпретации вообще)[26]. Успех Кулона зависел от создания им специального прибора для измерения силы, действующей на точечные заряды. (Те, кто до него измерял электрические силы, используя для этого обычные весы и т. д., не могли обнаружить постоянной зависимости или даже простой регулярности.) Но конструкция его прибора в свою очередь зависела от предварительного признания того, что каждая частичка электрического флюида воздействует на другую на расстоянии. Кулон искал именно такую силу взаимодействия между частицами, которую можно было бы легко представить как простую функцию от расстояния[27]. Эксперименты Джоуля также можно использовать для иллюстрации того, как количественные законы возникают благодаря разработке парадигмы. Фактически между качественной парадигмой и количественным законом существует столь общая и тесная связь, что после Галилея такие законы часто верно угадывались с помощью парадигмы за много лет до того, как были созданы приборы для их экспериментального обнаружения[28].

Наконец, имеется третий вид эксперимента, который нацелен на разработку парадигмы. Этот вид эксперимента более всех других похож на исследование. Особенно он преобладает в те периоды, когда в большей степени рассматриваются качественные, нежели количественные аспекты природных закономерностей, притом в тех науках, которые интересуются в первую очередь качественными законами. Часто парадигма, развитая для одной категории явлений, ставится под сомнение при рассмотрении другой категории явлений, тесно связанной с первой. Тогда возникает необходимость в экспериментах для того, чтобы среди альтернативных способов применения парадигмы выбрать путь к новой области научных интересов. Например, тепловая теория использовалась в качестве парадигмы в изучении процессов нагревания и охлаждения при смешивании и при изменении состояния. Но теплота может излучаться и поглощаться и во многих других случаях — например, при химическом соединении, при трении, благодаря сжатию или поглощению газа, — и к каждому из этих явлений тепловую теорию можно приложить по-разному. Если бы вакуум, например, имел теплоёмкость, то нагревание при сжатии можно было бы объяснить как результат смешивания газа с пустотой или изменением удельной теплоёмкости газов при изменении давления. Кроме того, есть и многие другие возможности объяснения. Для тщательного исследования этих возможных способов и их дифференциации предпринималось множество экспериментов, причём все они исходили из парадигмального характера тепловой теории и использовали её при разработке экспериментов и для интерпретации их результатов[29]. Как только был установлен факт нагревания при увеличении давления, все последующие эксперименты в этой области были подчинены тем самым парадигме. Если само явление установлено, то как ещё можно было объяснить выбор данного эксперимента?

Обратимся теперь к теоретическим проблемам нормальной науки, которые оказываются весьма близкими к тому кругу проблем, которые возникают в связи с наблюдением и экспериментом. Часть нормальной теоретической работы, хотя и довольно небольшая, состоит лишь в использовании существующей теории для предсказания фактов, имеющих значение сами по себе. Создание астрономических эфемерид, расчёт характеристики линз, вычисление траектории радиоволн представляют собой примеры проблем подобного рода. Однако учёные, вообще говоря, смотрят на решение этих проблем как на подённую работу, предоставляя заниматься ею инженерам и техникам. Солидные научные журналы весьма редко помещают результаты подобных исследований. Зато те же журналы уделяют большое место обсуждению проблем, которые обычный читатель должен был бы, вероятно, расценить как простые тавтологии. Такие чисто теоретические разработки предпринимаются не потому, что информация, которую они дают, имеет собственную ценность, а потому, что они непосредственно смыкаются с экспериментом. Их цель заключается в том, чтобы найти новое применение парадигмы или сделать уже найденное применение более точным.

Необходимость такого рода работы обусловлена огромными трудностями в применении теории к природе. Эти трудности можно кратко проиллюстрировать, обозревая путь, пройдённый динамикой после Ньютона. В первые годы XVIII века те учёные, которые нашли парадигму в «Началах», приняли общность её выводов без доказательства, и они имели все основания так сделать. Ни одна другая работа в истории науки не испытала столь быстрого расширения области применения и такого резкого возрастания точности. Для изучения небесных явлений Ньютон использовал кеплеровские законы движения планет, а также точно объяснил наблюдаемые отклонения от этих законов в движении Луны. Для изучения движения нашей планеты он использовал результаты некоторых разрозненных наблюдений над колебаниями маятника, наблюдений приливов и отливов. С помощью дополнительных, но в известном смысле произвольных (ad hoc) допущений он умел также вывести закон Бойля и важную формулу для скорости звука в воздухе. При тогдашнем уровне развития науки успех его демонстраций был в высшей степени впечатляющим, хотя, учитывая предполагаемую общность законов Ньютона, следует признать, что число этих приложений было сравнительно невелико и что Ньютон не смог добавить к ним почти никаких других. Более того, если сравнивать всё это с тем, чего может достигнуть в наше время любой аспирант-физик с помощью тех же самых законов, то окажется, что даже указанные Ньютоном несколько конкретных применений его законов не были разработаны с должной точностью. Наконец, «Начала» были предназначены главным образом для решения проблем небесной механики. Было совершенно неясно, как приспособить их для изучения земных процессов, в особенности для движения с учётом трения. Тем более, что весьма успешные попытки решения «земных» проблем были уже предприняты с использованием совершенно других технических средств, созданных впервые Галилеем и Гюйгенсом и использованных ещё шире европейскими учёными в течение XVIII века, такими, как Бернулли, Д’Аламбер и многие другие. Вполне вероятно, что их технические средства и некоторые приёмы, использованные в «Началах», можно было бы представить как специальные применения более общих формул, но до некоторых пор никто не представлял себе полностью, как это может быть реализовано конкретно[30].

Обратимся к рассмотрению проблемы точности. Мы уже иллюстрировали её эмпирический аспект. Для того чтобы обеспечить точные данные, которые требовались для конкретных применений парадигмы Ньютона, нужно было особое оборудование вроде прибора Кавендиша, машины Атвуда или усовершенствованного телескопа. С подобными же трудностями встречается и теория при установлении её соответствия с природой. Применяя свои законы к маятникам, Ньютон был вынужден принять гирю маятника за точку, обладающую массой гири, чтобы иметь точное определение длины маятника. Большинство из его теорем (за немногими исключениями, которые носили гипотетический или предварительный характер) игнорировали также влияние сопротивления воздуха. Всё это были законные физические упрощения. Тем не менее, будучи упрощениями, они так или иначе ограничивали ожидаемое соответствие между предсказаниями Ньютона и фактическими экспериментами. Те же трудности, даже в более явном виде, обнаруживаются и в применении теории Ньютона к небесным явлениям. Простые наблюдения с помощью телескопа показывают, что планеты не вполне подчиняются законам Кеплера, а теория Ньютона указывает, что этого и следовало ожидать. Чтобы вывести эти законы, Ньютон вынужден был пренебречь всеми явлениями гравитации, кроме притяжения между каждой в отдельности планетой и Солнцем. Поскольку планеты также притягиваются одна к другой, можно было ожидать лишь относительного соответствия между применяемой теорией и телескопическими наблюдениями[31].

Достигнутое соответствие, разумеется, представлялось более чем удовлетворительным для тех, кто его достиг. За исключением некоторых проблем движения Земли, ни одна другая теория не могла достигнуть подобного согласия с экспериментами. Ни один из тех, кто сомневался в обоснованности труда Ньютона, не делал этого в силу того, что этот труд был недостаточно согласован с экспериментом и наблюдением. Тем не менее ограниченность данного соответствия оставляла множество заманчивых теоретических проблем для последователей Ньютона. Например, требовались особые теоретические методы для истолкования движения более чем двух одновременно притягивающихся тел и исследования стабильности орбит при возмущениях. Проблемами, подобными этим, были заняты многие лучшие европейские мыслители на протяжении XVIII и начала XIX веков. Эйлер, Лагранж, Лаплас и Гаусс посвятили свои самые блестящие работы совершенствованию соответствия между парадигмой и наблюдением небесных явлений. Многие из этих мыслителей в то же время работали над прикладными проблемами применения математики в областях, о которых не могли думать ни сам Ньютон, ни его современники из континентальной школы механиков. Они написали множество работ и развили весьма мощный математический аппарат для гидродинамики и для решения проблемы колебания струны. В процессе решения этих прикладных проблем была осуществлена, вероятнее всего, наиболее блестящая и трудоёмкая из научных работ XVIII столетия. Другие примеры можно почерпнуть из обзора постпарадигмального периода в развитии термодинамики, волновой теории света, электромагнитной теории или других отраслей науки, в которых фундаментальные законы получили законченное количественное выражение. По крайней мере в наиболее математизированных науках основная часть теоретической работы состояла именно в этом.

Но это не значит, что вся работа имела подобный характер. Даже в математических науках существуют теоретические проблемы, связанные с более глубокой разработкой парадигмы. В те периоды, когда в науке преобладает качественное развитие, подобные проблемы выдвигаются на первый план. Некоторые из этих проблем, как в науках, использующих более широко количественные методы, так и в науках, пользующихся преимущественно качественными методами, нацелены просто на уяснение сути дела посредством введения новых формулировок. Например, практическое применение «Начал» не всегда оказывалось лёгкой работой. С одной стороны, это объясняется определённой тяжеловесностью, неизбежной в любом научном начинании, а с другой — тем, что в отношении применения слишком многое из содержания этого труда лишь подразумевалось. Во всяком случае для многих приложений «Начал» к «земным» проблемам методы, развитые, по-видимому, для другой области континентальными исследователями, выглядели намного более эффективными. Поэтому начиная с Эйлера и Лагранжа в XVIII веке до Гамильтона, Якоби, Герца в XIX веке многие из блестящих европейских специалистов по математической физике неоднократно пытались переформулировать теоретическую механику так, чтобы придать ей форму, более удовлетворительную с логической и эстетической точки зрения, не изменяя её основного содержания. Иными словами, они хотели представить явные и скрытые идеи «Начал» и всей континентальной механики в логически более связном варианте, в таком, который был бы одновременно и более унифицированным, и менее двусмысленным в его применениях к вновь разработанным проблемам механики[32].

Подобные переформулировки парадигм неоднократно предпринимались во всех науках, но большей частью они приводили к более существенным изменениям в парадигме, чем приведённые выше переформулировки «Начал». Такие изменения происходят в результате эмпирического исследования, описанного выше как стремление к разработке парадигмы. В действительности же классифицировать такой тип работы как эмпирический было бы слишком произвольно. Более чем любой другой вид нормального научного исследования, проблемы разработки парадигмы оказываются одновременно и теоретическими и эмпирическими. Примеры, приведённые выше, будут также хорошо служить и здесь. До того как Кулон смог сконструировать свой прибор и с помощью этого прибора произвести измерения, он использовал теорию электричества для того, чтобы определить, каким образом его прибор может быть построен. Результат его измерений был предвосхищен в теории. Или другой пример: те же самые исследователи, которые, чтобы обозначить границу между различными теориями нагревания, ставили эксперименты посредством увеличения давления, были, как правило, и теми, кто предлагал различные варианты для сравнения. Они работали и с фактами и с теориями, и их работа давала не просто новую информацию, но и более точную парадигму, благодаря удалению двусмысленностей, таившихся в первоначальной форме парадигмы, с которой они работали. Во многих дисциплинах большая часть работы, относящейся к сфере нормальной науки, состоит именно в этом.

Эти три класса проблем — установление значительных фактов, сопоставление фактов и теории, разработка теории — исчерпывают, как я думаю, поле нормальной науки, как эмпирической, так и теоретической. Они, разумеется, не исчерпывают всю научную проблематику без остатка. Существуют также экстраординарные проблемы, и, вероятно, именно их правильное разрешение делает научные исследования в целом особенно ценными. Но экстраординарные проблемы не должны нас здесь особенно волновать. Они возникают лишь в особых случаях, к которым приводит развитие нормального научного исследования. Поэтому подавляющее большинство проблем, поднятых даже самыми выдающимися учёными, обычно охватывается тремя категориями, указанными выше. Работа в рамках парадигмы не может протекать иначе, а отказаться от парадигмы значило бы прекратить те научные исследования, которые она определяет. Вскоре мы покажем, что заставляет учёных отказаться от парадигмы. Подобные отказы от парадигмы представляют собой такие моменты, когда возникают научные революции. Но прежде чем перейти к изучению этих революций, нам необходим более широкий взгляд на ход нормального исследования, которое готовит почву для революции.

IV

НОРМАЛЬНАЯ НАУКА КАК РЕШЕНИЕ ГОЛОВОЛОМОК

Возможно, что самая удивительная особенность проблем нормальной науки, с которой мы только что столкнулись, состоит в том, что они в очень малой степени ориентированы на крупные открытия, будь то открытие новых фактов или создание новой теории. Иногда, как в случае измерения длины волны, все детали результата, за исключением разве что наиболее тонких, известны заранее, так что спектр ожиданий оказывается лишь немного шире известной картины. Измерения Кулона, вероятно, и не требовали обязательного точного соответствия закону обратной зависимости от квадрата расстояния; тот, кто изучал нагревание при увеличении давления, часто заведомо предполагал один из многих возможных результатов. К тому же даже в подобных случаях область ожидаемых и, следовательно, усваиваемых результатов всегда мала по сравнению с тем, что может охватить воображение. И если результат проекта не попадает в эту более узкую область, то это рассматривается обычно как неудача исследования, которая отражает не отклонение природы от закона, но лишь ошибку учёного.

Например, в XVIII веке мало внимания обращалось на эксперименты по измерению электрического притяжения с помощью таких приборов, как крутильные весы. Поскольку подобные эксперименты не приносили ни устойчивых, ни достаточно простых результатов, их нельзя было использовать для разработки парадигмы, от которой они произошли. Следовательно, они оставались просто фактами, которые не были и не могли быть связанными с непрерывным прогрессом исследований по электричеству. Только ретроспективно, достигнув следующей парадигмы, мы можем понять, на какие свойства электрических явлений они указывали. Конечно, Кулон и его современники также работали на основе этой более поздней парадигмы или же парадигмы, которая обещала те же самые результаты в области проблемы притяжения. Вот почему Кулону удалось сконструировать прибор, который привёл к результату, пригодному для дальнейшей разработки парадигмы. Но по этой же причине подобный результат никого не удивил и несколько современников Кулона смогли в принципе предсказать этот результат. Даже те проекты, целью которых является разработка парадигмы, не стремятся к неожиданным новшествам.

Но если цель нормальной науки не в том чтобы внести какие-либо крупные, значительные новшества, если тщетная попытка достигнуть ожидаемых результатов или приблизиться к ним является обычно неудачей учёного, то почему всё-таки нормальная наука рассматривает и решает свои проблемы? Частично мы уже ответили на этот вопрос. Для учёного результаты научного исследования значительны уже по крайней мере потому, что они расширяют область и повышают точность применения парадигмы. Однако этот ответ не может объяснить тот энтузиазм и увлечённость, которые свойственны учёным, работающим над проблемами нормального исследования. Никто не затрачивает годы, скажем, на создание усовершенствованного спектрометра или на более точное решение проблемы колебания струны в силу одной лишь важности информации, которая при этом приобретается. Данные, получаемые при подсчёте эфемерид или при дополнительных измерениях с помощью имеющихся инструментов, часто столь же значительны, но подобная деятельность постоянно отвергается учёными с презрением, потому что представляет собой в основном просто повторение процедуры, разработанной уже ранее. Этот отказ даёт разгадку всей привлекательности проблем нормальной науки. Хотя её результаты могут быть предсказаны — причём настолько детально, что всё оставшееся неизвестным само по себе уже теряет интерес, — сам способ получения результата остаётся в значительной мере сомнительным. Завершение проблемы нормального исследования — разработка нового способа предсказания, а она требует решения всевозможных сложных инструментальных, концептуальных и математических задач-головоломок. Тот, кто преуспевает в этом, становится специалистом такого рода деятельности, и стимулом его дальнейшей активности служит жажда решения новых задач-головоломок.

Термины «задача-головоломка» и «специалист по решению задач-головоломок» имеют первостепенное значение для многих вопросов, которые будут в центре нашего внимания на следующих страницах. Задачи-головоломки — в самом обычном смысле, подразумеваемом в данном случае, — представляют собой особую категорию проблем, решение которых может служить пробным камнем для проверки таланта и мастерства исследователя. Словарными иллюстрациями к слову могут служить «составная фигура-головоломка» и «головоломка-кроссворд». У этих головоломок есть характерные черты, общие с нормальной наукой, черты, которые мы должны теперь выделить. Одна из них только что упоминалась. Но она не является критерием доброкачественной головоломки, показателем того, что её решение может быть само по себе интересным или важным. Напротив, действительно неотложные проблемы, например поиски средства против рака или создание прочного мира на земле, часто вообще не являются головоломками главным образом потому, что их решение может полностью отсутствовать. Рассмотрим «составную фигуру-головоломку», элементы которой взяты наугад из двух разных коробок с головоломками. Поскольку эта проблема, вероятно, должна таить в себе непреодолимые трудности (хотя их может и не быть) даже для самых изобретательных людей, она не может служить проверкой мастерства в решении головоломок. В любом обычном смысле её вообще нельзя назвать головоломкой. Хотя собственная ценность не является критерием головоломки, существование решения является таким критерием.

Мы уже видели, однако, что, овладевая парадигмой, научное сообщество получает по крайней мере критерий для выбора проблем, которые могут считаться в принципе разрешимыми, пока эта парадигма принимается без доказательства. В значительной степени это только те проблемы, которые сообщество признает научными или заслуживающими внимания членов данного сообщества. Другие проблемы, включая многие считавшиеся ранее стандартными, отбрасываются как метафизические, как относящиеся к компетенции другой дисциплины или иногда только потому, что они слишком сомнительны, чтобы тратить на них время. Парадигма в этом случае может даже изолировать сообщество от тех социально важных проблем, которые нельзя свести к типу головоломок, поскольку их нельзя представить в терминах концептуального и инструментального аппарата, предполагаемого парадигмой. Такие проблемы рассматриваются лишь как отвлекающие внимание исследователя от подлинных проблем, что очень наглядно иллюстрируется различными аспектами бэконовского подхода XVII века и некоторыми современными социальными науками. Одна из причин, в силу которой нормальная наука кажется прогрессирующей такими быстрыми темпами, заключается в том, что учёные концентрируют внимание на проблемах, решению которых им может помешать только недостаток собственной изобретательности.

Однако если проблемы нормальной науки являются в этом смысле головоломками, то отпадает необходимость объяснять подробнее, почему учёные штурмуют их с такой страстью и увлечением. Наука может быть привлекательной для человека с самых разных точек зрения. Среди главных мотивов, побуждающих человека к научному исследованию, можно назвать желание добиться успеха, вдохновение от открытия новой области, надежда найти закономерность и стремление к критической проверке установленного знания. Эти и другие мотивы также помогают учёному определить и частные проблемы, которыми он планирует заняться в будущем. Более того, хотя результатом исследования является иногда крушение надежд, этих мотивов вполне достаточно для того, чтобы вначале привлечь человека, а потом и увлечь его навсегда[33]. Научное предприятие в целом время от времени доказывает свою плодотворность, открывает новые области, обнаруживает закономерности и проверяет давние убеждения. Тем не менее индивидуальное исследование проблем нормальной науки почти никогда не даёт подобного эффекта ни в одном из этих аспектов. Учёного увлекает уверенность в том, что если он будет достаточно изобретателен, то ему удастся решить головоломку, которую до него не решал никто или в решении которой никто не добился убедительного успеха. Многие из величайших умов отдавали всё своё внимание заманчивым головоломкам такого рода. В большинстве случаев любая частная область специализации, кроме этих головоломок, не предлагает ничего такого, на чём можно было бы попробовать свои силы, но именно этот факт таит в себе тоже своеобразное искушение.

Вернёмся теперь к другому, более трудному и более содержательному аспекту параллелизма между головоломками и проблемами нормальной науки. Проблема, классифицируемая как головоломка, должна быть охарактеризована не только тем, что она имеет гарантированное решение. Должны существовать также правила, которые ограничивают как природу приемлемых решений, так и те шаги, посредством которых достигаются эти решения. Например, решить составную картинку-загадку не значит «составить картинку». Ребёнок или современный художник мог бы сделать это, складывая разбросанные, произвольно выбранные элементы, как абстрактные формы, на некотором нейтральном фоне. Картинка, созданная таким образом, может оказаться намного лучше и быть более оригинальной, чем та, из которой головоломка была сделана. Тем не менее такая картинка не могла бы быть её решением. Чтобы получить настоящее решение, должны быть использованы все фрагменты, их плоская сторона должна быть обращена вниз и они должны быть собраны без усилий и использованы без остатка. Таковы некоторые правила решения картинки-головоломки. Подобные ограничения, накладываемые на приемлемые решения кроссвордов, загадок, шахматных задач и т. д., вскрываются без труда.

Если мы придадим значительно более широкий смысл термину «правило» (который иногда эквивалентен «утвердившейся точке зрения» или «предпосылке»), тогда проблемы, допустимые в данной исследовательской традиции, имеют большое сходство с множеством характеристик головоломки. Учёный, создающий инструмент для определения длины световых волн, не должен удовлетворяться такой аппаратурой, которая просто сопоставляет особые спектральные линии и особые числа. Он не просто исследует или измеряет. Наоборот, он должен показать, анализируя свою аппаратуру на основе созданной основы оптической теории, что числа, которые даёт его прибор, входят в теорию как длины волн. Если неясности в теории или какой-то неисследованный компонент в его аппаратуре остаются и мешают завершить демонстрацию, его коллеги могут легко заключить, что ему не удалось измерить ничего вообще. Например, максимумы в разбросе электронов, которые позднее были представлены как указание на длины волн электрона, не имели явного значения, когда впервые были открыты и зафиксированы. Прежде чем они стали показателями чего-либо вообще, их необходимо было соотнести с теорией, подсказавшей волнообразное поведение движущихся частиц. И даже после того, как эта связь была установлена, аппаратура должна быть сконструирована заново таким образом, чтобы экспериментальные результаты могли недвусмысленно согласовываться с теорией[34]. До тех пор пока эти условия не удовлетворены, ни одна проблема не может считаться решённой.

Подобные виды ограничений связывали приемлемые решения с теоретическими проблемами. На протяжении всего XVIII века те учёные, которые пытались вывести наблюдаемое движение Луны из ньютоновских законов движения и тяготения, постоянно терпели в этом неудачи. В конце концов некоторые из них предложили заменить закон обратной зависимости от квадрата расстояния другим законом, который отличался от первого тем, что действовал на малых расстояниях. Однако для этого следовало бы изменить парадигму, определить условия новой головоломки и отказаться от решения старой. В данном случае учёные сохраняли правила до тех пор, пока в 1750 году один из них не открыл, каким образом эти правила могли быть использованы с успехом[35]. Другое решение вопроса могло дать лишь изменение в правилах игры.

Изучение традиций нормальной науки раскрывает множество дополнительных правил, а они в свою очередь дают массу информации о тех предписаниях, которые выводят учёные из своих парадигм. Что же можно сказать об основных категориях, которые охватывают эти правила?[36] Наиболее очевидные и, вероятно, наиболее обязывающие правила показаны на примере тех видов обобщений, которые мы только что отметили. Это эксплицитные утверждения о научном законе, о научных понятиях и теориях. До тех пор пока они остаются признанными, они помогают выдвигать головоломки и ограничивать приемлемые решения. Законы Ньютона, например, выполняли подобные функции в течение XVIII и XIX веков. Пока они выполняли эти функции, количество материи было фундаментальной онтологической категорией для учёных-физиков, а силы, возникающие между частицами материи, были основным предметом исследования[37]. В химии законы постоянных и определённых пропорций имели долгое время точно такую же силу: с их помощью была поставлена проблема атомных весов, ограничены приемлемые результаты химического анализа и химики были информированы о том, чту представляют собой атомы и молекулы, соединения и смеси[38]. Уравнения Максвелла и законы статистической термодинамики имеют то же самое значение и функции в наше время.

Однако правила, подобные этим, не являются исключительным и даже наиболее интересным видом правил, открытых при изучении истории. Например, на более низком или более конкретном уровне, чем законы и теории, есть множество предписаний по поводу предпочтительных типов инструментария и способов, которыми принятые инструменты могут быть правомерно использованы. Изменение взглядов на роль огня в химическом анализе сыграло жизненно важную роль в развитии химии XVII века[39]. Гельмгольц в XIX веке натолкнулся на сильное противодействие со стороны физиологов, полагавших, что физическое экспериментирование не может помочь исследованиям в их области[40]. В том же веке весьма любопытная история создания химической хроматографии ещё раз иллюстрировала стойкость предписаний относительно инструментов, которые в той же мере, как законы и теории, снабжают учёных правилами игры[41]. Анализируя открытие рентгеновских лучей, мы обнаружим основания для возникновения предписаний подобного рода.

Менее локальными и преходящими, хотя всё же не абсолютными, характеристиками науки являются предписания более высокого уровня; я имею в виду квазиметафизические предписания, которые историческое исследование постоянно обнаруживает в науке. Например, приблизительно после 1630 года и в особенности после появления научных работ Декарта, имевших необычайно большое влияние, большинство учёных-физиков допускало, что универсум состоит из микроскопических частиц, корпускул, и что все явления природы могут быть объяснены в терминах корпускулярных форм, корпускулярных размеров, движения и взаимодействия. Этот набор предписаний оказался и метафизическим и методологическим. В качестве метафизического он указывал физикам, какие виды сущностей действительно имеют место во Вселенной, а каких нет: существует лишь материя, имеющая форму и находящаяся в движении. В качестве методологического набора предписаний он указывал физикам, какими должны быть окончательные объяснения и фундаментальные законы: законы должны определять характер корпускулярного движения и взаимодействия, а объяснения должны сводить всякое данное природное явление к корпускулярному механизму, подчиняющемуся этим законам. Ещё более важно то, что корпускулярное понятие универсума указывало учёным множество проблем, подлежащих исследованию. Например, химик, принявший, подобно Бойлю, новую философию, обращал особое внимание на реакции, которые можно было бы рассматривать как превращения вещества. Они показывали более ясно, чем другие, процесс корпускулярного перераспределения, который должен лежать в основании всех химических превращений[42]. Подобные признаки влияния корпускуляризма можно наблюдать при изучении механики, оптики и теплоты.

Наконец, на ещё более высоком уровне есть другая система предписаний, без которых человек не может быть учёным. Учёный должен, например, стремиться понять мир, расширять пределы области познания и повышать точность, с которой она должна быть упорядочена. Это предписание должно в свою очередь привести учёного к тщательному исследованию — как им самим, так и его коллегами — некоторых аспектов природы с учётом множества эмпирических деталей. И если данное исследование выявляет моменты явного нарушения порядка, то это должно быть для него призывом к новому усовершенствованию приборов наблюдения или к дальнейшей разработке его теорий. Нет никакого сомнения, что есть и другие правила, подобные этим, которыми пользуются учёные во все времена.

Существование такой жёстко определённой сети предписаний — концептуальных, инструментальных и методологических — представляет основание для метафоры, уподобляющей нормальную науку решению головоломок. Поскольку эта сеть даёт правила, которые указывают исследователю в области зрелой науки, чту представляют собой мир и наука, изучающая его, постольку он может спокойно сосредоточить свои усилия на эзотерических проблемах, определяемых для него этими правилами и существующим знанием. От отдельного учёного требуется затем лишь решение оставшихся нерешёнными головоломок. В этих и других отношениях обсуждение головоломок и правил проливает свет на природу нормальной научной практики, хотя, с другой стороны, такой подход может ввести в заблуждение. Очевидно, что существуют правила, которых придерживаются все учёные-профессионалы в данное время, тем не менее эти правила сами по себе не могут охватить всё то общее, что имеется в различных видах нормального исследования. Нормальная наука — это в высокой степени детерминированная деятельность, но вовсе нет необходимости в том, чтобы она была полностью детерминирована определёнными правилами. Вот почему в начале настоящего очерка я предпочёл ввести в качестве источника согласованности в традициях нормального исследования принцип общепринятой парадигмы, а не общепринятых правил, допущений и точек зрения. Правила, как я полагаю, вытекают из парадигм, но парадигмы сами могут управлять исследованием даже в отсутствие правил.

VI

АНОМАЛИЯ И ВОЗНИКНОВЕНИЕ НАУЧНЫХ ОТКРЫТИЙ

Нормальная наука, деятельность по решению головоломок, которую мы только что рассмотрели, представляет собой в высшей степени кумулятивное предприятие, необычайно успешное в достижении своей цели, то есть в постоянном расширении пределов научного знания и в его уточнении. Во всех этих аспектах она весьма точно соответствует наиболее распространённому представлению о научной работе. Однако один из стандартных видов продукции научного предприятия здесь упущен. Нормальная наука не ставит своей целью нахождение нового факта или теории, и успех в нормальном научном исследовании состоит вовсе не в этом. Тем не менее новые явления, о существовании которых никто не подозревал, вновь и вновь открываются научными исследованиями, а радикально новые теории опять и опять изобретаются учёными. История даже наводит на мысль, что научное предприятие создало исключительно мощную технику для того, чтобы преподносить сюрпризы подобного рода. Если эту характеристику науки нужно согласовать с тем, что уже было сказано, тогда исследование, использующее парадигму, должно быть особенно эффективным стимулом для изменения той же парадигмы. Именно это и делается новыми фундаментальными фактами и теориями. Они создаются непреднамеренно в ходе игры по одному набору правил, но их восприятие требует разработки другого набора правил. После того как они стали элементами научного знания, наука, по крайней мере в тех частных областях, которым принадлежат эти новшества, никогда не остаётся той же самой.

Нам следует теперь выяснить, как возникают изменения подобного рода, рассматривая впервые сделанные открытия или новые факты, а затем изобретения или новые теории. Однако это различие между открытием и изобретением или между фактом и теорией на первый взгляд может показаться чрезвычайно искусственным. Тем не менее его искусственность даёт важный ключ к нескольким основным тезисам данной работы. Рассматривая ниже в настоящем разделе отдельные открытия, мы очень быстро придём к выводу, что они являются не изолированными событиями, а длительными эпизодами с регулярно повторяющейся структурой. Открытие начинается с осознания аномалии, то есть с установления того факта, что природа каким-то образом нарушила навеянные парадигмой ожидания, направляющие развитие нормальной науки. Это приводит затем к более или менее расширенному исследованию области аномалии. И этот процесс завершается только тогда, когда парадигмальная теория приспосабливается к новым обстоятельствам таким образом, что аномалии сами становятся ожидаемыми. Усвоение теорией нового вида фактов требует чего-то большего, нежели просто дополнительного приспособления теории; до тех пор пока это приспособление не будет полностью завершено, то есть пока учёный не научится видеть природу в ином свете, новый факт не может считаться вообще фактом вполне научным.

Чтобы увидеть, как тесно переплетаются фактические и теоретические новшества в научном открытии, рассмотрим хорошо известный пример — открытие кислорода. По крайней мере три человека имеют законное право претендовать на это открытие, и, кроме них, ещё несколько химиков в начале 70-х годов XVIII века осуществляли обогащение воздуха в лабораторных сосудах, хотя сами не знали об этой стороне своих опытов[50]. Прогресс нормальной науки, в данном случае химии газов, весьма основательно подготовил для этого почву. Самым первым претендентом, получившим относительно чистую пробу газа, был шведский аптекарь К. В. Шееле. Тем не менее мы можем игнорировать его работу, так как она не была опубликована до тех пор, пока о повторном открытии кислорода не было заявлено в другом месте, и, таким образом, его работа никак не сказалась на исторической модели, которая интересует нас в данном случае прежде всего[51]. Вторым по времени заявившим об открытии был английский учёный и богослов Джозеф Пристли, который собрал газ, выделившийся при нагревании красной окиси ртути, как исходный материал для последующего нормального исследования «воздухов», выделяемых большим количеством твёрдых веществ. В 1774 году он отождествил газ, полученный таким образом, с закисью азота, а в 1775 году, осуществляя дальнейшие проверки, — с воздухом вообще, имеющим меньшую, чем обычно, дозу флогистона. Третий претендент, Лавуазье, начал работу, которая привела его к открытию кислорода, после эксперимента Пристли в 1774 году и, возможно, благодаря намёку со стороны Пристли. В начале 1775 года Лавуазье сообщил, что газ, получаемый после нагревания красной окиси ртути, представляет собой «воздух как таковой без изменений [за исключением того, что]… он оказывается более чистым, более пригодным для дыхания»[52]. К 1777 году, вероятно не без второго намёка Пристли, Лавуазье пришёл к выводу, что это был газ особой разновидности, один из основных компонентов, составляющих атмосферу. Сам Пристли с таким выводом никогда не смог бы согласиться.

Эта схема открытия поднимает вопрос, который следует задать о каждом новом явлении, осознаваемом учёными. Кто первый открыл кислород: Пристли, Лавуазье или кто-то ещё? Как бы то ни было, возникает и другой вопрос: когда был открыт кислород? Последний вопрос был бы уместен даже в том случае, если бы существовал только один претендент. Сами по себе вопросы приоритета и даты нас, вообще говоря, не интересуют. Тем не менее стремление найти ответ на них освещает природу научного открытия, потому что нет очевидного ответа на подобный вопрос. Открытие не относится к числу тех процессов, по отношению к которым вопрос о приоритете является полностью адекватным. Тот факт, что он поставлен (вопрос о приоритете в открытии кислорода не раз поднимался с 80-х годов XVIII века), есть симптом какого-то искажения образа науки, которая отводит открытию такую фундаментальную роль. Вернёмся ещё раз к нашему примеру. Претензии Пристли по поводу открытия кислорода основывались на его приоритете в получении газа, который позднее был признан особым, не известным до тех пор видом газа. Но проба Пристли не была чистой, и если получение кислорода с примесями считать его открытием, тогда то же в принципе можно сказать о всех тех, кто когда-либо заключал в сосуд атмосферный воздух. Кроме того, если Пристли был первооткрывателем, то когда в таком случае было сделано открытие? В 1774 году он считал, что получил закись азота, то есть разновидность газа, которую он уже знал. В 1775 году он полагал, что полученный газ является дефлогистированным воздухом, но ещё не кислородом. Для химика, придерживающегося теории флогистона, это был совершенно неведомый вид газа. Претензии Лавуазье более основательны, но они поднимают те же самые проблемы. Если мы не отдаём пальму первенства Пристли, то мы не можем присудить её и Лавуазье за работу 1775 года, в которой он приходит к выводу об идентичности газа с «воздухом как таковым». По-видимому, больше похожи на открытие работы 1776 и 1777 годов, в которых Лавуазье не просто указывает на существование газа, но и показывает, чту представляет собой этот газ. Однако и это решение можно было бы подвергнуть сомнению. Дело в том, что и в 1777 году, и до конца своей жизни Лавуазье настаивал на том, что кислород представляет собой атомарный «элемент кислотности» и что кислород как газ образуется только тогда, когда этот «элемент» соединяется с теплородом, с материей теплоты[53]. Можем ли мы на этом основании говорить, что кислород в 1777 году ещё не был открыт? Подобный соблазн может возникнуть. Но элемент кислотности был изгнан из химии только после 1810 года, а понятие теплорода умирало ещё до 60-х годов XIX века. Кислород стал рассматриваться в качестве обычного химического вещества ещё до этих событий.

Очевидно, что требуется новый словарь и новые понятия для того, чтобы анализировать события, подобные открытию кислорода. Хотя предложение «Кислород был открыт», несомненно, правильно, оно вводит в заблуждение, внушая мысль, что открытие чего-либо представляет собой простой единичный акт, сравнимый с нашим обычным (а также не слишком удачным) понятием въдения. Вот почему мы так охотно соглашаемся с тем, что процесс открытия, подобно зрению или осязанию, столь же определённо должен быть приписан отдельной личности и определённому моменту времени. Но открытие никогда невозможно приурочить к определённому моменту; часто его нельзя и точно датировать. Игнорируя Шееле, мы можем уверенно сказать, что кислород не был открыт до 1774 года. Мы могли бы, вероятно, также сказать, что он был открыт к 1777 году или немногим позже. Но в этих границах или других, подобных этим, любая попытка датировать открытие неизбежно должна быть произвольной, поскольку открытие нового вида явлений представляет собой по необходимости сложное событие. Оно предполагает осознание и того, чту произошло, и того, каким образом оно возникло. Заметим, например, что если кислород является для нас воздухом с меньшей долей флогистона, то мы должны утверждать без колебаний, что первооткрывателем его был Пристли, хотя ещё и не знаем, когда было сделано открытие. Но если с открытием неразрывно связано не только наблюдение, но и концептуализация, обнаружение самого факта и усвоение его теорией, тогда открытие есть процесс и должно быть длительным по времени. Только если все соответствующие концептуальные категории подготовлены заранее, открытие чего-то и определение, что это такое, легко осуществляется совместно и одновременно (но в таком случае нельзя было бы говорить о явлении нового вида).

Допустим теперь, что открытие предполагает продолжительный, хотя и не обязательно очень длительный, процесс концептуального усвоения. Можем ли мы также сказать, что оно влечёт за собой изменение парадигмы? На этот вопрос нельзя дать общего ответа, но в данном случае по крайней мере ответ должен быть утвердительным. То, о чём писал Лавуазье в своих статьях начиная с 1777 года, было не столько открытием кислорода, сколько кислородной теорией горения. Эта теория была ключом для перестройки химии, причём такой основательной, что её обычно называют революцией в химии. В самом деле, если бы открытие кислорода не было непосредственной частью процесса возникновения новой парадигмы в химии, то вопрос о приоритете, с которого мы начали, никогда не казался бы таким важным. В этом случае, как и в других, определение того, имеет ли место новое явление, и, таким образом, установление его первооткрывателя меняется в зависимости от нашей оценки той степени, в которой это явление нарушило ожидания, вытекающие из парадигмы. Заметим, однако (так как это будет важно в дальнейшем), что открытие кислорода само по себе не было причиной изменения химической теории. Задолго до того, как Лавуазье сыграл свою роль в открытии нового газа, он был убеждён, что в теории флогистона было что-то неверным и что горящие тела поглощают какую-то часть атмосферы. Многие соображения по этому вопросу он сообщил в заметках, отданных на хранение во Французскую Академию в 1772 году[54]. Работа Лавуазье над вопросом о существовании кислорода дополнительно способствовала укреплению его прежнего мнения, что где-то был допущен просчёт. Она подсказала ему то, что он уже готов был открыть, — природу вещества, которое при окислении поглощается из атмосферы. Это более чёткое осознание трудностей, вероятно, было главным, что заставило Лавуазье увидеть в экспериментах, подобных экспериментам Пристли, газ, который сам Пристли обнаружить не смог. И наоборот, для того, чтобы увидеть то, что удалось увидеть Лавуазье, был необходим основательный пересмотр парадигм, что оказалось принципиальной причиной того, что Пристли до конца своей жизни не смог увидеть кислород.

Два других и гораздо более кратких примера подтвердят многое из сказанного. Одновременно они позволят нам перейти от выяснения природы открытий к пониманию обстоятельств, при которых они возникают в науке. Стараясь представить главные пути, которыми могут возникать открытия, мы выбрали эти примеры так, чтобы они отличались как друг от друга, так и от открытия кислорода. Первый, открытие рентгеновских лучей, представляет собой классический пример случайного открытия. Данный тип открытия встречается гораздо чаще, чем это можно заключить на основании сухих стандартных сообщений. История открытия рентгеновских лучей начинается с того дня, когда физик Рентген прервал нормальное исследование катодных лучей, поскольку заметил, что экран, покрытый платиносинеродистым барием, на некотором расстоянии от экранирующего устройства светился во время разряда. Дальнейшее исследование (оно заняло семь изнурительных недель, в течение которых Рентген редко покидал лабораторию) показало, что причиной свечения являются прямые лучи, исходящие от катодно-лучевой трубки, что излучение даёт тень, не может быть отклонено с помощью магнита и многое другое. До того как Рентген объявил о своём открытии, он пришёл к убеждению, что этот эффект обусловлен не катодными лучами, а излучением, в некоторой степени напоминающим свет[55].

Даже такое краткое изложение сути дела показывает разительное сходство с открытием кислорода: до экспериментов с красной окисью ртути Лавуазье проводил эксперименты, которые не подтверждали предсказания с точки зрения флогистонной парадигмы. Открытие Рентгена началось с обнаружения свечения экрана, когда этого нельзя было ожидать. В обоих случаях осознание аномалии, то есть явления, к восприятию которого парадигма не подготовила исследователя, сыграло главную роль в подготовке почвы для понимания новшества. Но опять-таки в обоих случаях ощущение того, что не всё идёт, как задумано, было лишь прелюдией к открытию. Ни открытие кислорода, ни открытие рентгеновских лучей не совершались без дальнейшего процесса экспериментирования и усвоения. Например, в каком пункте работы Рентгена можно сказать, что рентгеновские лучи действительно уже открыты? В любом случае это открытие совершилось не на первом этапе, когда было замечено только свечение экрана. По крайней мере ещё один исследователь наблюдал это свечение и ничего нового не обнаружил, что впоследствии вызвало его досаду[56]. Точно так же — и это вполне очевидно — момент открытия нельзя было приблизить и в течение последней недели исследования, когда Рентген изучал свойства нового излучения, которое он уже открыл. Мы можем сказать лишь, что рентгеновские лучи были открыты в Вюрцбурге в период между 8 ноября и 28 декабря 1895 года.

Однако, если взять третью из перечисленных выше категорий фактов, то здесь наличие важных аналогий между открытием кислорода и рентгеновских лучей далеко не так очевидно. В отличие от открытия кислорода открытие рентгеновских лучей, по крайней мере в течение последующих 10 лет, не вызвало ни одного явного изменения в научной теории. В таком случае возникает вопрос: в каком смысле можно говорить, что восприятие этого открытия потребовало изменения парадигмы? Повод для отрицания этого изменения весьма серьёзен. Разумеется, парадигмы, признанные Рентгеном и его современниками, нельзя было использовать для предсказания рентгеновских лучей. Электромагнитная теория Максвелла ещё не была принята повсеместно, а партикулярная теория катодных лучей[57] была лишь одним из многих ходячих спекулятивных построений. Но ни одна из этих парадигм, по крайней мере в любом известном смысле, не накладывала запрет на существование рентгеновских лучей так, как теория флогистона запрещала интерпретацию полученного Пристли газа в смысле, предложенном Лавуазье. Наоборот, в 1895 году принятые научные теории и практика научных исследований допускали ряд различных типов излучения видимого, инфракрасного и ультрафиолетового света. Почему бы, спрашивается, не считать рентгеновские лучи ещё одной формой хорошо известного класса явлений природы? Например, почему они не были восприняты точно так же, как воспринимается открытие новых химических элементов? Новые элементы, заполняющие пустые клетки в периодической таблице, разыскивались и обнаруживались во времена Рентгена. Их поиск был типичным проектом для нормальной науки, а успех был лишь поводом для поздравлений, но не для удивления.

Тем не менее открытие рентгеновских лучей было не только удивительным, но и потрясающим. Лорд Кельвин объявил их вначале тщательно разработанной мистификацией[58]. Другие же, хотя и не сомневались в доказательстве, были явно потрясены открытием. Если наличие рентгеновских лучей и не вступало в явное противоречие с установившейся теорией, они всё же нарушали глубоко укоренившиеся ожидания. Эти ожидания, как я полагаю, скрыто присутствовали в проведении и интерпретации отработанных лабораторных процедур.

К 90-м годам XIX века установками для получения катодных лучей было оснащено множество лабораторий в Европе. Если установка Рентгена позволяла получать рентгеновские лучи, то многие другие экспериментаторы, должно быть, в течение некоторого времени получали эти лучи, но сами этого не знали. Возможно, что эти лучи могли иметь точно так же и другие неизвестные источники и таким образом присутствовали и в других явлениях, объяснённых ранее без упоминания о рентгеновских лучах. По крайней мере некоторые виды хорошо известных приборов следовало с этого времени снабжать свинцовыми экранами. Теперь предварительно выполненную по проектам нормальной науки работу необходимо было проделать заново, поскольку до сих пор учёным не удавалось узнать и проконтролировать соответствующие переменные величины. Рентгеновские лучи, разумеется, открыли новую область и таким образом расширили потенциальную сферу нормальной науки. Но сейчас наиболее важный момент состоял в том, что они внесли изменения в те области, которые уже существовали. В силу этого они отняли у прежних парадигмальных типов инструментария право на этот титул.

Короче говоря, решение использовать особый вид аппаратуры и эксплуатировать его особым образом влечёт за собой допущение, сознательно или нет, что будут иметь значение только определённые виды условий. Ожидания бывают как инструментальные, так и теоретические, и они часто играли решающую роль в развитии науки. Одно из таких ожиданий, например, имело большое значение в истории запоздалого открытия кислорода. Используя стандартный способ проверки воздуха на «доброкачественность», и Пристли и Лавуазье смешивали два объёма обнаруженного ими газа с одним объёмом окиси азотистой кислоты, встряхивали смесь в присутствии воды и измеряли объём оставшегося газа. Предыдущий опыт, на основе которого была установлена эта стандартная процедура, гарантировал им, что для атмосферного воздуха остаток должен быть равен одному объёму и что для любого другого газа (или для неочищенного воздуха) он должен быть больше. В эксперименте с кислородом как Пристли, так и Лавуазье обнаружили остаток, близкий одному объёму, и в соответствии с этим идентифицировали газ. Только значительно позже и в какой-то степени случайно Пристли отбросил стандартную процедуру и попытался смешивать окись азотистой кислоты с газом в другой пропорции. Тогда он и обнаружил, что с учетверённым объёмом окиси азотистой кислоты остатка вообще почти не наблюдается. Его предписание относительно исходной процедуры контрольного эксперимента — процедуры, санкционированной большим предшествующим опытом, — было одновременно предписанием отрицать существование газов, которые могли вести себя так, как кислород[59].

Иллюстрации такого рода можно было бы умножить, обращаясь, например, к причинам того, почему так поздно было правильно понято деление урана. Одна из причин, почему эта ядерная реакция оказалась особенно трудной для распознания, заключалась в том, что учёные, знавшие, чего можно ожидать при бомбардировке урана, предпочитали химические способы проверки, направленные главным образом на элементы верхнего ряда периодической системы элементов[60].

Должны ли мы, наблюдая за тем, как часто такие инструментальные предписания приводят к заблуждениям, сделать вывод, что наука должна отказаться от стандартных проверок и стандартных инструментов? Это могло бы привести к неразберихе в методе исследования. Процедуры парадигмы и её приложения необходимы науке так же, как парадигмальные законы и теории, и служат тем же самым целям. Они неизбежно сужают область явлений, доступную в данное время для научного исследования. Осознавая это, мы в то же время можем видеть тот существенный момент, согласно которому открытия, подобные открытию рентгеновских лучей, делают необходимым изменение парадигмы — и, следовательно, изменение как процедур, так и ожиданий — для определённой части научного сообщества. В результате мы можем также понять, каким образом открытие рентгеновских лучей могло показаться многим учёным открытием нового странного мира и могло так эффективно участвовать в кризисе, который привёл к физике XX века.

Наш последний пример научного открытия — создание лейденской банки — относится к классу, который можно характеризовать как открытия, «индуцированные теорией» (theory-induced). На первый взгляд этот термин может показаться парадоксальным. Многое из того, что было сказано до сих пор, внушало мысль, что открытия, предсказанные теорией заранее, являются частями нормальной науки, в результате чего в рамках этих открытий новые виды фактов отсутствуют. Выше я касался, например, открытий новых химических элементов во второй половине XIX века как примеров деятельности нормальной науки. Но не все теории являются парадигмальными. И в течение допарадигмального периода, и в течение кризисов, которые приводят к крупномасштабному изменению парадигмы, учёные обычно разрабатывают много спекулятивных и туманных теорий, которые могут сами по себе указать путь к открытию. Однако часто такое открытие не является открытием, которое полностью предвосхищено спекулятивными пробными гипотезами.

Только когда эксперимент и пробная теория оказываются соответствующими друг другу, возникает открытие и теория становится парадигмой.

Создание лейденской банки обнаруживает все указанные и даже дополнительные черты, которые мы рассматривали выше. Когда оно произошло, для исследования электричества не было единой парадигмы. Вместо этого был целый ряд теорий, выведенных из исследования сравнительно доступных явлений и конкурировавших между собой. Ни одна из них не достигла цели в упорядочении всего многообразия электрических явлений. Эта неудача становится источником некоторых аномалий, которые стимулировали изобретение лейденской банки. Одна из соперничающих школ рассматривала электричество как флюид, и эта концепция привела ряд исследователей к попытке собрать флюид с помощью стакана, наполненного водой, который держали в руках, а вода имела контакт через проводник с действующим электрогенератором. Отодвигая банку от машины и касаясь воды (или проводника, который соединялся с нею) свободной рукой, каждый исследователь ощущал резкий удар током. Однако эти первые эксперименты ещё не привели исследователей электричества к созданию лейденской банки. Её проект созревал очень медленно. И опять невозможно точно сказать, когда её открытие было осуществлено. Первоначальные попытки собрать электрический флюид оказались осуществимыми только потому, что исследователи держали стакан в своих руках, в то время как сами стояли на земле. К тому же исследователи электричества должны ещё были убедиться, что банка нуждается в наружном и внутреннем проводящем покрытии и что флюид в действительности, вообще говоря, не заполняет банку. Когда это выявилось в процессе исследований (которые обнаружили и некоторые другие аномалии), возник прибор, названный лейденской банкой. Кроме того, эксперименты, которые привели к её появлению и многие из которых осуществил Франклин, требовали решительного пересмотра флюидной теории, и, таким образом, они обеспечивали первую полноценную парадигму для изучения электричества[61].

В большей или меньшей степени (соответственно силе потрясения от непредвиденных результатов) общие черты, присущие трём примерам, приведённым выше, характеризуют все открытия новых видов явлений. Эти характеристики включают: предварительное осознание аномалии, постепенное или мгновенное её признание — как опытное, так и понятийное, и последующее изменение парадигмальных категорий и процедур, которое часто встречает сопротивление. Можно даже утверждать, что те же самые характеристики внутренне присущи самой природе процесса восприятия. В психологическом эксперименте, значение которого заслуживает того, чтобы о нём знали и непсихологи, Дж. Брунер и Л. Постмен просили испытуемых распознать за короткое и фиксированное время серию игральных карт. Большинство карт были стандартными, но некоторые были изменены, например красная шестёрка пик и чёрная четвёрка червей. Каждый экспериментальный цикл состоял в том, что испытуемому показывали одну за другой целую серию карт, причём время показа карт постепенно возрастало. После каждого сеанса испытуемый должен был сказать, что он видел, а цикл продолжался до тех пор, пока испытуемый дважды не определял полностью правильно всю серию показываемых карт[62].

Даже при наикратчайших показах большинство испытуемых распознавали значительную часть карт, а после небольшого увеличения времени предъявления, все испытуемые распознавали все карты. С нормальными картами распознавание обычно протекало гладко, но изменённые карты почти всегда без заметного колебания или затруднения отождествлялись с нормальными. Чёрная четвёрка червей, например, могла быть опознана как четвёрка пик либо как четвёрка червей. Без какого-либо особого затруднения испытуемый мгновенно приспосабливался к одной из концептуальных категорий, подготовленных предшествующим опытом. Нельзя даже с уверенностью сказать, что испытуемые видели нечто отличное от того, что они идентифицировали. При последующем увеличении экспозиции изменённых карт испытуемые начинали колебаться и обнаруживали осознание аномалии. Например, видя красную шестёрку пик, некоторые говорили: «Это — шестёрка пик, но здесь что-то не так — чёрное имеет красное очертание». Дальнейшее увеличение экспозиции вызывало ещё большее сомнение и замешательство до тех пор, пока в конце концов, иногда совершенно внезапно, большинство испытуемых начинало производить идентификацию правильно. Кроме того, после подобной процедуры с двумя или тремя аномальными картами испытуемые в дальнейшем сталкивались с меньшими трудностями с другими картами. Однако оказалось, что некоторое количество испытуемых так и не смогло произвести надлежащую корректировку своих категорий. Даже после увеличения времени показа в сорок раз против средней продолжительности экспозиции, необходимой для распознания нормальной карты, более чем 10 процентов аномальных карт не было опознано ими правильно, причём испытуемые, которым не удавалось выполнить задание, часто испытывали горькую досаду. Один из них воскликнул: «Я не могу определить ни одной масти. Она даже не похожа на карту. Я не знаю, какой масти она сейчас: пиковая или червовая. Я не уверен сейчас, как выглядят пики. Боже мой!»[63]. В следующем разделе мы убедимся в том, что учёные ведут себя иногда подобным же образом.



Независимо от того, считать ли сопоставление с подобными экспериментами метафорическим или отражающим природу разума, эти психологические эксперименты дают удивительно простую и убедительную схему процесса научного открытия. В науке, как и в эксперименте с игральными картами, открытие всегда сопровождается трудностями, встречает сопротивление, утверждается вопреки основным принципам, на которых основано ожидание. Сначала воспринимается только ожидаемое и обычное даже при обстоятельствах, при которых позднее всё-таки обнаруживается аномалия. Однако дальнейшее ознакомление приводит к осознанию некоторых погрешностей или к нахождению связи между результатом и тем, что из предшествующего привело к ошибке. Такое осознание аномалии открывает период, когда концептуальные категории подгоняются до тех пор, пока полученная аномалия не становится ожидаемым результатом. В этом пункте процесс открытия заканчивается. Я уже подчёркивал, что с этим процессом или с каким-либо весьма подобным ему связано возникновение всех научных открытий. Позвольте мне сейчас обратить внимание на то, что, осознавая этот процесс, мы можем в конце концов понять, почему нормальная наука, не стремясь непосредственно к новым открытиям и намереваясь вначале даже подавить их, может быть тем не менее постоянно эффективным инструментом, порождающим эти открытия.

В развитии любой науки первая общепринятая парадигма обычно считается вполне приемлемой для большинства наблюдений и экспериментов, доступных специалистам в данной области. Поэтому дальнейшее развитие, обычно требующее создания тщательно разработанной техники, есть развитие эзотерического словаря и мастерства и уточнение понятий, сходство которых с их прототипами, взятыми из области здравого смысла, непрерывно уменьшается. Такая профессионализация ведёт, с одной стороны, к сильному ограничению поля зрения учёного и к упорному сопротивлению всяким изменениям в парадигме. Наука становится всё более строгой. С другой стороны, внутри тех областей, на которые парадигма направляет усилия группы, нормальная наука ведёт к накоплению подробной информации и к уточнению соответствия между наблюдением и теорией, которого невозможно было бы достигнуть как-то иначе. Кроме того, такая детальная разработка и уточнение соответствия имеют ценность, которая превышает интерес (обычно незначительный) к собственно внутреннему содержанию этой работы. Без специальной техники, которая создаётся главным образом для ожидаемых явлений, открытия новых фактов не происходит. И даже когда такая техника существует, первооткрывателем оказывается тот, кто, точно зная, чего он ожидает, способен распознать то, чту отклоняется от ожидаемого результата. Аномалия появляется только на фоне парадигмы. Чем более точна и развита парадигма, тем более чувствительным индикатором она выступает для обнаружения аномалии, что тем самым приводит к изменению в парадигме. В нормальной модели открытия даже сопротивление изменению приносит пользу. Этот вопрос будет более полно разработан в следующем разделе. Гарантируя, что парадигма не будет отброшена слишком легко, сопротивление в то же время гарантирует, что внимание учёных не может быть легко отвлечено и что к изменению парадигмы приведут только аномалии, пронизывающие научное знание до самой сердцевины. Тот факт, что важные научные новшества так часто предлагались в одно и то же время несколькими лабораториями, указывает на в значительной мере традиционную природу нормальной науки и на полноту, с которой эта традиционность последовательно подготавливает путь к собственному изменению.

VII

КРИЗИС И ВОЗНИКНОВЕНИЕ НАУЧНЫХ ТЕОРИЙ

Все открытия, рассмотренные в VI разделе, были либо причинами изменений в парадигме, либо содействовали этим изменениям. Кроме того, все изменения, которые привели к этим открытиям, были настолько же деструктивными, насколько и конструктивными. После того как открытие осознано, учёные получают возможность объяснять более широкую область природных явлений или рассматривать более точно некоторые из тех явлений, которые были известны ранее. Но этот прогресс достигался только путём отбрасывания некоторых прежних стандартных убеждений или процедур, а также путём замены этих компонентов предыдущей парадигмы другими. Изменения подобного рода, как я стремился показать, связаны со всеми открытиями, достигаемыми нормальной наукой, за исключением тех сравнительно тривиальных открытий, которые можно было хотя бы в общих чертах предвидеть и заранее. Однако открытия не являются единственными источниками деструктивно-конструктивных изменений в парадигме. В этом разделе мы начнём рассматривать подобные, но обычно намного более обширные изменения, которые являются результатом создания новых теорий.

Мы уже показали, что в науках факт и теория, открытие и исследование не разделены категорически и окончательно. Поэтому не исключено, что этот раздел будет в чём-то повторять предшествующий. (Нельзя утверждать, что Пристли первый открыл кислород, а Лавуазье затем создал кислородную теорию горения, как бы ни была привлекательна такая точка зрения. Получение кислорода уже рассматривалось как открытие. Мы вскоре вернёмся к нему, рассматривая его уже как создание кислородной теории горения.) Анализируя возникновение новых теорий, мы неизбежно расширим также наше понимание процесса открытия. Однако частичное совпадение не есть идентичность. Типы открытий, представленные в предыдущем разделе, не были, по крайней мере каждый в отдельности, ответственны за такие изменения парадигмы, как коперниканская, ньютонианская, химическая и эйнштейновская революции. Они не несут ответственности даже за узкоспециальные и потому менее значительные изменения в парадигме, вызванные волновой теорией света, динамической теорией теплоты или электромагнитной теорией Максвелла. Каким образом теории, подобные указанным, могут являться результатом нормальной науки, деятельность которой направлена больше на то, что следует из открытий, чем на поиски этих теорий?

Если осознание аномалии имеет значение в возникновении нового вида явлений, то вовсе не удивительно, что подобное, но более глубокое осознание является предпосылкой для всех приемлемых изменений теории. Имеющиеся исторические данные на этот счёт, как я думаю, совершенно определённы. Положение астрономии Птолемея было скандальным ещё до открытий Коперника[64]. Вклад Галилея в изучение движения в значительной степени основывался на трудностях, вскрытых в теории Аристотеля критикой схоластов[65]. Новая теория света и цвета Ньютона возникла с открытием, что ни одна из существующих парадигмальных теорий не способна учесть длину волны в спектре. А волновая теория, заменившая теорию Ньютона, появилась в самый разгар возрастающего интереса к аномалиям, затрагивающим дифракционные и поляризационные эффекты теории Ньютона[66]. Термодинамика родилась из столкновения двух существовавших в XIX веке физических теорий, а квантовая механика — из множества трудностей вокруг истолкования излучения чёрного тела, удельной теплоёмкости и фотоэлектрического эффекта[67]. Кроме того, во всех этих случаях, исключая пример с Ньютоном, осознание аномалий продолжалось так долго и проникало так глубоко, что можно с полным основанием охарактеризовать затронутые ими области как области, находящиеся в состоянии нарастающего кризиса. Поскольку это требует пересмотра парадигмы в большом масштабе и значительного прогресса в проблемах и технических средствах нормальной науки, то возникновению новых теорий, как правило, предшествует период резко выраженной профессиональной неуверенности. Вероятно, такая неуверенность порождается постоянной неспособностью нормальной науки решать её головоломки в той мере, в какой она должна это делать. Банкротство существующих правил означает прелюдию к поиску новых.

Рассмотрим прежде всего один из наиболее известных случаев изменения парадигмы — возникновение коперниканской астрономии. Её предшественница — система Птолемея, — которая сформировалась в течение последних двух столетий до новой эры и первых двух новой эры, имела необычайный успех в предсказании изменений положения звёзд и планет. Ни одна другая античная система не давала таких хороших результатов; для изучения положения звёзд астрономия Птолемея всё ещё широко используется и сейчас как техническая аппроксимация; для предсказания положения планет теория Птолемея была не хуже теории Коперника. Но для научной теории достичь блестящих успехов ещё не значит быть полностью адекватной. Что касается положения планет и прецессии, то их предсказания, получаемые с помощью системы Птолемея, никогда полностью не соответствовали наиболее удачным наблюдениям. Дальнейшее стремление избавиться от этих незначительных расхождений поставило много принципиальных проблем нормального исследования в астрономии для многих последователей Птолемея — точно так же, как попытка согласовать наблюдение небесных явлений и теорию Ньютона породила нормальные исследовательские проблемы для последователей Ньютона в XVIII веке. Но некоторое время астрономы имели полное основание предполагать, что эти попытки могут быть столь же успешными, как и те, что привели к системе Птолемея. Если и было какое-то расхождение, то астрономам неизменно удавалось устранять его, внося некоторые частные поправки в систему концентрических орбит Птолемея. Но время шло, и учёный, взглянув на полезные результаты, достигнутые нормальным исследованием благодаря усилиям многих астрономов, мог увидеть, что путаница в астрономии возрастала намного быстрее, чем её точность, и что корректировка расхождения в одном месте влекла за собой появление расхождения в другом[68].

Из-за того, что астрономическая традиция неоднократно нарушалась извне, а также из-за того, что при отсутствии печати коммуникации между астрономами были ограничены, эти трудности осознавались очень медленно. Но так или иначе они были осознаны. В XIII веке Альфонс Х мог заявить, что если бы бог посоветовался с ним, когда создавал мир, то он получил бы неплохой совет[69]. В XVI веке коллега Коперника Доменико де Новара пришёл к выводу, что ни одна система, такая громоздкая и ошибочная, как система Птолемея, не может претендовать на выражение истинного знания о природе. И сам Коперник писал в предисловии к «De revolutionibus»[70], что астрономическая традиция, которую он унаследовал, в конце концов породила только псевдонауку. В начале XVI века увеличивается число превосходных астрономов в Европе, которые осознают, что парадигма астрономии терпит неудачу в применении её при решении собственных традиционных проблем. Это осознание было предпосылкой отказа Коперника от парадигмы Птолемея и основой для поисков новой парадигмы. Его прекрасное предисловие к «De revolutionibus» до сих пор служит образцом классического описания кризисной ситуации[71].

Неспособность справиться с возникающими в развитии нормальной науки техническими задачами по решению головоломок, конечно, не была единственной составной частью кризиса в астрономии, с которым столкнулся Коперник. При более подробном рассмотрении следует также принять во внимание социальное требование реформы календаря, которое сделало разгадку прецессии особенно настоятельной. Кроме того, более полное объяснение должно учесть критику Аристотеля в средние века, подъём неоплатонизма в эпоху Возрождения и, помимо сказанного, другие важные исторические детали. Но ядром кризиса всё же остаётся неспособность справиться с техническими задачами. В зрелой науке — а астрономия стала таковой ещё в эпоху античности — внешние факторы, подобные приведённым выше, являются принципиально важными при определении стадий упадка. Они позволяют также легко распознать упадок нормальной науки и определить область, в которой этот упадок наметился впервые. Данное обстоятельство заслуживает особого внимания. Но хотя все эти факторы необычайно важны, предмет обсуждения такого рода выходит за рамки данной работы.

Так как пример с коперниканской революцией достаточно ясен, перейдём от него ко второму, в ряде моментов отличному по значению примеру кризиса, который предшествовал появлению кислородной теории горения Лавуазье. К 70-м годам XVIII века целый комплекс факторов создал кризис в химии, но не все историки согласны друг с другом относительно его природы и относительно важности тех или иных факторов в его возникновении. Однако два фактора обычно считаются наиболее значительными: возникновение химии газов и постановка вопроса о весовых соотношениях. История химии газов начинается в XVII веке с создания воздушного насоса и его применения в химическом эксперименте. В течение следующего столетия, применяя насос и ряд других пневматических устройств, химики вскоре приходят к выводу, что воздух, вероятно, является активным ингредиентом в химических реакциях. Но за редкими исключениями — такими сомнительными, что их можно было бы не упоминать вообще, — химики продолжают верить, что воздух — только вид газа. До 1756 года, когда Джозеф Блэк показал, что «тяжёлый воздух» (СО2 ) может быть путём чёткой процедуры выделен из обычного воздуха, считалось, что две пробы газа могут различаться только благодаря различному содержанию загрязняющих примесей[72].

После работы Блэка исследование газов протекало ускоренно, особенно благодаря Кавендишу, Пристли и Шееле, которые разработали ряд новых приборов, позволивших отличить одну пробу газа от другой. Все исследователи, начиная от Блэка и до Шееле, верили в теорию флогистона и часто использовали её при проведении и интерпретации эксперимента. Шееле фактически первый получил кислород с помощью тщательно разработанной последовательности экспериментов, намереваясь дефлогистировать теплоту. К тому же общим результатом, полученным благодаря их экспериментам, было множество проб газа и свойств газа, полученных таким образом, что теория флогистона практически не «вписывалась» в проведение лабораторного опыта. Хотя ни один из названных химиков не допускал мысли, что теория должна быть заменена, они не могли применять её постоянно. Ко времени, когда Лавуазье начал свои эксперименты с воздухом в начале 70-х годов XVIII века, было почти столько же вариантов теории флогистона, сколько было химиков-пневматиков[73]. Такое быстрое умножение вариантов теории есть весьма обычный симптом её кризиса. В предисловии к своей работе Коперник также выражал недовольство подобным обстоятельством.

Однако возрастание неопределённости и уменьшение пригодности теории флогистона для пневматической химии[74] не были единственным источником кризиса, с которым столкнулся Лавуазье. Он также сильно был озабочен проблемой объяснения увеличения веса, которое наблюдалось у большинства веществ при сжигании или прокаливании, а эта проблема тоже имеет большую предысторию. По крайней мере нескольким арабским химикам было известно, что некоторые металлы увеличивают свой вес в процессе прокаливания. В XVII веке ряд исследователей сделали из того же факта вывод, что при прокаливании металла происходит поглощение некоторого ингредиента из атмосферы. Но в то время такой вывод для большинства химиков казался не необходимым. Если химические реакции могли изменять объём, цвет и плотность ингредиентов, то почему, спрашивается, они не могут точно так же изменять и вес? Вес не всегда рассматривался как мера количества материи. Кроме того, прирост веса при прокаливании оставался изолированным явлением. Большинство природных веществ (например, древесина) теряют вес при прокаливании, как и должно было быть в согласии с более поздним вариантом теории флогистона.

Однако в течение XVIII века ранее удовлетворявшие учёных ответы на проблему изменения веса вызывают всё более серьёзные трудности. Частично вследствие того, что весы всё чаще использовались как необходимое экспериментальное средство для химика, а частично вследствие того, что развитие пневматической химии сделало возможным и желательным сохранение газообразного продукта реакций, химики открывали всё больше случаев увеличения веса при прокаливании. Одновременно постепенное внедрение теории тяготения Ньютона привело химиков к мнению, что увеличение в весе должно означать увеличение количества материи. Эти выводы не являются следствием отказа от теории флогистона, ибо данная теория могла быть согласована многими различными способами с такими выводами. Например, можно было предположить, что флогистон имеет отрицательный вес, либо частицы огня или чего-то ещё проникают в прокаливаемое вещество, как только флогистон покидает его. Были и другие объяснения. Но если проблема приращения веса не приводила к отказу от теории флогистона, то всё же она привела к большому числу специальных исследований, где эта проблема становилась основной. Одно из них, озаглавленное «Флогистон как субстанция, имеющая вес и [анализируемая] на основе изменения веса, производимого флогистоном в веществах в процессе его соединения с ними», было доложено на заседании Французской Академии в начале того самого 1772 года, в конце которого Лавуазье передал свою знаменитую запечатанную записку в Академию. До того, как эта записка была написана, проблема, такая острая для химиков, много лет оставалась неразрешимой головоломкой[75] , и для того, чтобы справиться с ней, было разработано много различных версий теории флогистона. Подобно проблемам пневматической химии, проблемы изменения веса всё больше и больше затрудняли понимание того, чту собственно представляет собой теория флогистона. Всё ещё признаваемая и принимаемая в качестве средства исследования, парадигма химии XVIII века тем не менее постепенно теряла свой статус в качестве единственного способа объяснения этих явлений. Чем дальше, тем больше исследование, направляемое ею, напоминало то исследование, которое проводилось под контролем конкурирующих школ допарадигмального периода. Это являлось другим типичным следствием кризиса.

Рассмотрим теперь в качестве третьего и заключительного примера кризис в физике конца XIX века, который подготовил путь для возникновения теории относительности. Один источник кризиса можно проследить в конце XVII века, когда ряд натурфилософов, особенно Лейбниц, критиковали Ньютона за сохранение, хотя и в модернизированном варианте, классического понятия абсолютного пространства[76]. Они довольно точно, хотя и не всегда в полной мере, смогли показать, что абсолютное пространство и абсолютное движение не несли какой бы то ни было нагрузки в системе Ньютона вообще. Больше того, они высказали догадку, что полностью релятивистское понятие пространства и движения, которое и было открыто позднее, имело бы бóльшую эстетическую привлекательность. Но их критика была чисто логической. Подобно ранним сторонникам Коперника, которые критиковали доказательства Аристотелем неподвижности Земли, они не помышляли о том, что переход к релятивистской системе может иметь осязаемые последствия. Ни в одном пункте они не соотнесли свои точки зрения с теми проблемами, которые возникали в результате применения теории Ньютона к природным явлениям. В результате их точки зрения умерли с ними вместе в течение первых десятилетий XVIII века и вновь воскресли только в последние десятилетия XIX века, когда они приобрели совершенно иное отношение к практике физических исследований.

Технические проблемы, с которыми релятивистская философия пространства в конечном счёте должна была быть соотнесена, начали проникать в нормальную науку с принятием волновой теории света примерно после 1815 года, хотя они не вызвали никакого кризиса вплоть до 90-х годов XIX века. Если свет является волновым движением, распространяющимся в механическом эфире, и подчиняется законам Ньютона, тогда и наблюдение небесных явлений, и эксперимент в земных условиях дают потенциальные возможности для обнаружения «эфирного ветра». Из небесных явлений только наблюдения за аберрацией звёзд обещали быть достаточно точными для получения надёжной информации, и обнаружение «эфирного ветра» с помощью измерения аберраций становится общепризнанной проблемой нормального исследования. Однако подобные измерения, несмотря на большое число специально сконструированных приборов, не обнаружили никакого наблюдаемого «эфирного ветра», и поэтому проблема перешла от экспериментаторов и наблюдателей к теоретикам. В середине века Френель, Стокс и другие разработали многочисленные варианты теории эфира, предназначенные для объяснения неудачи в наблюдении «эфирного ветра». Каждый из этих вариантов допускал, что движущееся тело увлекает за собой частички эфира. И каждый из вариантов достаточно успешно объяснял отрицательные результаты не только наблюдения небесных явлений, но также экспериментов на земле, включая знаменитый эксперимент Майкельсона и Морли[77]. Но конфликта всё ещё не было, исключая конфликты между различными толкованиями. К тому же из-за отсутствия соответствующей экспериментальной техники эти конфликты никогда не были острыми.

Ситуация вновь изменилась только благодаря постепенному принятию электродинамической теории Максвелла в последние два десятилетия XIX века. Сам Максвелл был ньютонианцем и верил, что свет и электромагнетизм вообще обусловлены изменчивыми перемещениями частиц механического эфира. Его наиболее ранние варианты теории электричества и магнетизма были направлены на использование гипотетических свойств, которыми он наделял данную среду. Эти свойства были опущены в окончательном варианте его теории, но он всё ещё верил, что его электромагнитная теория совместима с некоторым вариантом механической точки зрения Ньютона[78]. От него и его последователей требовалось соответствующим образом чётко сформулировать эту точку зрения. Однако на практике, как это не раз случалось в развитии науки, ясная формулировка теории встретилась с необычайными трудностями. Точно так же, как астрономический план Коперника, несмотря на оптимизм автора, породил возрастающий кризис существовавших тогда теорий движения, теория Максвелла вопреки своему ньютонианскому происхождению создала соответственно кризис парадигмы, из которой она произошла[79]. Кроме того, пункт, в котором кризис разгорелся с наибольшей силой, был связан как раз с только что рассмотренными проблемами — проблемами движения относительно эфира.

Исследование Максвеллом электромагнитного поведения движущихся тел не затрагивало вопроса о сопротивлении эфирной среды, и ввести это сопротивление в его теорию оказалось чрезвычайно трудно. В результате получилось, что целый ряд ранее осуществлённых наблюдений, направленных на то, чтобы обнаружить «эфирный ветер», указывал на аномалию. Поэтому период после 1890 года был отмечен долгой серией попыток — как экспериментальных, так и теоретических — определить движение относительно эфира и внедрить в теорию Максвелла представление о сопротивлении эфира. Экспериментальные исследования были сплошь безуспешными, хотя некоторые учёные сочли результаты неопределёнными. Что же касается теоретических попыток, то они дали ряд многообещающих импульсов, особенно исследования Лоренца и Фицджеральда, но в то же время они вскрыли и другие трудности; в конечном итоге произошло точно такое же умножение теорий, которое, как мы обнаружили ранее, сопутствует кризису[80]. Всё это противоречит утверждениям историков, что специальная теория относительности Эйнштейна возникла в 1905 году.

Эти три примера почти полностью типичны. В каждом случае новая теория возникла только после резко выраженных неудач в деятельности по нормальному решению проблем. Более того, за исключением примера со становлением гелиоцентрической теории Коперника, где внешние по отношению к науке факторы играли особенно большую роль, указанные неудачи и умножение теорий, которые являются симптомом близкого крушения прежней парадигмы, длились не более чем десяток или два десятка лет до формулировки новой теории. Новая теория предстаёт как непосредственная реакция на кризис. Заметим также, хотя это, может быть, и не столь типично, что проблемы, по отношению к которым отмечается начало кризиса, бывают все именно такого типа, который давно уже был осознан. Предшествующая практика нормальной науки дала все основания считать их решёнными или почти решёнными. И это помогает объяснить, почему чувство неудачи, когда оно наступает, бывает столь острым. Неудача с новым видом проблем часто разочаровывает, но никогда не удивляет. Ни проблемы, ни головоломки не решаются, как правило, с первой попытки. Наконец, всем этим примерам свойствен ещё один признак, который подчёркивает важную роль кризисов: разрешение кризиса в каждом из них было, по крайней мере частично, предвосхищено в течение периода, когда в соответствующей науке не было никакого кризиса, но при отсутствии кризиса эти предвосхищения игнорировались.

Единственное полное предвосхищение, которое в то же время и наиболее известно, — предвосхищение Коперника Аристархом в III веке до н. э. Часто говорят, что если бы греческая наука была менее дедуктивной и меньше придерживалась догм, то гелиоцентрическая астрономия могла начать своё развитие на восемнадцать веков раньше, чем это произошло на самом деле[81]. Но говорить так — значит игнорировать весь исторический контекст данного события. Когда было высказано предположение Аристарха, значительно более приемлемая геоцентрическая система удовлетворяла всем нуждам, для которых могла бы предположительно понадобиться гелиоцентрическая система. В целом развитие птолемеевской астрономии, и её триумф и её падение, происходит после выдвижения Аристархом своей идеи. Кроме того, не было очевидных оснований для принятия идеи Аристарха всерьёз. Даже более тщательно разработанный проект Коперника не был ни более простым, ни более точным, нежели система Птолемея. Достоверные проверки с помощью наблюдения, как мы увидим более ясно далее, не обеспечивали никакой основы для выбора между ними. При этих обстоятельствах одним из факторов, который привёл астрономов к коперниканской теории (и который не мог в своё время привести их к идее Аристарха), явился осознаваемый кризис, которым в первую очередь было обусловлено создание новой теории. Астрономия Птолемея не решила своих проблем, и настало время предоставить шанс конкурирующей теории. Два других наших примера не обнаруживают столь же полных предвосхищений, однако несомненно, что одна из причин, в силу которых теории горения, объясняемого поглощением кислорода из атмосферы (развитые в XVII веке Реем, Гуком и Майовом), не получили достаточного распространения, состояла в том, что они не устанавливали никакой связи с проблемами нормальной научной практики, представляющими трудности[82]. И то, что учёные XVIII—XIX веков долго пренебрегали критикой Ньютона со стороны релятивистски настроенных авторов, в значительной степени связано с подобной неспособностью к сопоставлению различных точек зрения.

Философы науки неоднократно показывали, что на одном и том же наборе данных всегда можно возвести более чем один теоретический конструкт. История науки свидетельствует, что, особенно на ранних стадиях развития новой парадигмы, не очень трудно создавать такие альтернативы. Но подобное изобретение альтернатив — это как раз то средство, к которому учёные, исключая периоды допарадигмальной стадии их научного развития и весьма специальных случаев в течение их последующей эволюции, прибегают редко. До тех пор пока средства, представляемые парадигмой, позволяют успешно решать проблемы, порождаемые ею, наука продвигается наиболее успешно и проникает на самый глубокий уровень явлений, уверенно используя эти средства. Причина этого ясна. Как и в производстве, в науке смена инструментов — крайняя мера, к которой прибегают лишь в случае действительной необходимости. Значение кризисов заключается именно в том, что они говорят о своевременности смены инструментов.

1. Что такое кумулятивная модель развития науки? Где в повседневности мы с ней встречаемся? Какие проблемы и противоречия несет в себе эта модель рассмотрения науки?2. Какой проект представляет «новая историография», которую продолжает Т. Кун?3. В чем положены различия между школами в одной сфере научных разработок?4. В чем заключается «субъективность» эксперимента? Всегда ли эксперимент субъективен?5. Что такое научная революция? Каковы ее причины? Приведите примеры.6. Что представляет собой наука до стадии «нормальной науки»? 7. Каков «критерий» выбора единой парадигмы из нескольких, существующих в период до «нормальной науки»?8. Что можно выделить в качестве «плюсов» и «минусов» единой парадигмы в отрасли науки?9. Какие три центральных момента в научном исследовании некоторой области фактов выделяет Т. Кун?10. Возможна ли, на Ваш взгляд, создание современной нам техники без науки? А создание техники начала 20 века?11. Какая мотивация движет учеными на разных стадиях развития науки? Какие стадии развития науки, кстати, можно выделить?








sitemap
sitemap