Компьютерное моделирование



Исследовательская работа

«КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ»

выпоЛНИЛ:

КОБЕЛЬНИЦКИЙ ВЛАДИСЛАВ

УЧЕНИК 9 КЛАССА

МКОУ ООШ №17

РУКоводитель:

учитель математики и информатики

тВОРОЗОВА Е.С.



кАНСК, 2013

сОДЕРЖАНИЕ:



вВЕДЕНИЕ……………………………………………………………………3



КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ……………………………………5

ПРАКТИЧЕСКАЯ ЧАСТЬ…………………………………………………..10

ЗАКЛЮЧЕНИЕ………………………………………………………………18

СПИСОК ЛИТЕРАТУРЫ……………………………………………………20

ВВЕДЕНИЕ

В большинстве сфер человеческой деятельности в настоящее время применяется компьютерная техника. Например, в парикмахерской можно с помощью компьютера подобрать заранее ту прическу, которая понравится клиенту. Для этого клиента фотографируют, фотографию в электронном виде вводят в программу, содержащую самые разнообразные прически, на экране отображается фото клиента, к которому можно «примерить» любую прическу. Также легко можно подобрать цвет волос, макияж. С помощью компьютерной модели можно заранее увидеть, подойдет ли клиенту та или иная прическа. Конечно, этот вариант лучше, нежели проводить эксперимент реально, в реальной жизни исправить нежелательную ситуацию гораздо сложнее.

Изучая тему по информатике, «Компьютерное моделирование», меня заинтересовал вопрос – «Любой ли процесс, или явление можно смоделировать с помощью ПК?». Это и послужило выбором моего исследования.

Тема моего исследования: «Компьютерное моделирование».

Гипотеза: любой процесс или явление можно смоделировать с помощью ПК.

Цель работы – изучить возможности компьютерного моделирования, использование его в различных предметных областях.

Для достижения данной цели в работе решаются следующие задачи:

– дать теоретические сведения о моделировании;

– описать этапы моделирования;

– привести примеры моделей процессов или явлений из различных предметных областей;

— сделать общий вывод о компьютерном моделировании в предметных областях.

Я решил подробнее рассмотреть компьютерное моделирование в программах MS Excel и «Живая математика». В работе рассмотрены преимущества программы MS Excel. С помощью данных программ, мной были построены компьютерные модели из различных предметных областей, таких как математика, физика, биология.

Построение и исследование моделей – это один из важнейших методов познания, умение использовать компьютер для построения моделей – одно из требований сегодняшнего дня, поэтому я считаю данную работу актуальной. Она является важной для меня, так как я хочу продолжить свое дальнейшее обучение в этом направлении, а также рассмотреть другие программы при разработке компьютерных моделей, это цель на дальнейшее продолжение этой работы.

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

Анализируя литературу по теме исследования, я выяснил, что практически во всех естественных и социальных науках построение и использование моделей, является мощным инструментом исследований. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим способом их изучения оказывается построение модели, отображающей лишь какую-то часть реальности и потому многократно более простой, чем эта реальность.

Модель (лат. modulus — мера) — это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.Модель — создаваемый с целью получения и (или) хранения информации специфический объект (в форме мысленного образа, описания знаковыми средствами либо материальной системы), отражающий свойства, характеристики и связи объекта – оригинала произвольной природы, существенные для задачи, решаемой субъектом. Моделирование – процесс создания и использования модели.

Цели моделирования

Познание действительности

Проведение экспериментов

Проектирование и управление

Прогнозирование поведения объектов

Тренировка и обучения специалистов

Обработка информации

Классификация по форме представления

Материальные — воспроизводят геометрические и физические свойства оригинала и всегда имеют реальное воплощение (детские игрушки, наглядные учебные пособия, макеты, модели автомобилей и самолетов и прочее).

a) геометрически подобные масштабные, воспроизводящие пространственно- геометрические характеристики оригинала безотносительно его субстрату (макеты зданий и сооружений, учебные муляжи и др.);

b) основанные на теории подобия субстратно подобные, воспроизводящие с масштабированием в пространстве и времени свойства и характеристики оригинала той же природы, что и модель, (гидродинамические модели судов, продувочные модели летательных аппаратов);

c) аналоговые приборные, воспроизводящие исследуемые свойства и характеристики объекта оригинала в моделирующем объекте другой природы на основе некоторой системы прямых аналогий (разновидности электронного аналогового моделирования).

Информационные — совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также их взаимосвязь с внешним миром).

2.1. Вербальные — словесное описание на естественном языке).

2.2. Знаковые — информационная модель, выраженная специальными знаками (средствами любого формального языка).

2.2.1. Математические — математическое описание соотношений между количественными характеристиками объекта моделирования.

2.2.2. Графические — карты, чертежи, схемы, графики, диаграммы, графы систем.

2.2.3. Табличные — таблицы: объект-свойство, объект-объект, двоичные матрицы и так далее.

Идеальные – материальная точка, абсолютно твердое тело, математический маятник, идеальный газ, бесконечность, геометрическая точка и прочее…

3.1. Неформализованные модели — системы представлений об объекте оригинале, сложившиеся в человеческом мозгу.

3.2. Частично формализованные.

3.2.1. Вербальные — описание свойств и характеристик оригинала на некотором естественном языке (текстовые материалы проектной документации, словесное описание результатов технического эксперимента).

3.2.2. Графические иконические — черты, свойства и характеристики оригинала, реально или хотя бы теоретически доступные непосредственно зрительному восприятию (художественная графика, технологические карты).

3.2.3. Графические условные — данные наблюдений и экспериментальных исследований в виде графиков, диаграмм, схем.

3.3. Вполне формализованные (математические) модели.

Свойства моделей

Конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;

Упрощенность: модель отображает только существенные стороны объекта;

Приблизительность: действительность отображается моделью грубо или приблизительно;

Адекватность: насколько успешно модель описывает моделируемую систему;

Информативность: модель должна содержать достаточную информацию о системе — в рамках гипотез, принятых при построении модел;

Потенциальность: предсказуемость модели и её свойств;

Сложность: удобство её использования;

Полнота: учтены все необходимые свойства;

Адаптивность.

Так же необходимо отметить:

Модель представляет собой «четырехместную конструкцию», компонентами которой являются субъект; задача, решаемая субъектом; объект-оригинал и язык описания или способ воспроизведения модели. Особую роль в структуре обобщенной модели играет решаемая субъектом задача. Вне контекста задачи или класса задач понятие модели не имеет смысла.

Каждому материальному объекту, вообще говоря, соответствует бесчисленное множество в равной мере адекватных, но различных по существу моделей, связанных с разными задачами.

Паре задача-объект тоже соответствует множество моделей, содержащих в принципе одну и ту же информацию, но различающихся формами ее представления или воспроизведения.

Модель по определению всегда является лишь относительным, приближенным подобием объекта-оригинала и в информационном отношении принципиально беднее последнего. Это ее фундаментальное свойство.

Произвольная природа объекта-оригинала, фигурирующая в принятом определении, означает, что этот объект может быть материально-вещественным, может носить чисто информационный характер и, наконец, может представлять собой комплекс разнородных материальных и информационных компонентов. Однако независимо от природы объекта, характера решаемой задачи и способа реализации модель представляет собой информационное образование.

Частным, но весьма важным для развитых в теоретическом отношении научных и технических дисциплин является случай, когда роль объекта-моделирования в исследовательской или прикладной задаче играет не фрагмент реального мира, рассматриваемый непосредственно, а некий идеальный конструкт, т.е. по сути дела другая модель, созданная ранее и практически достоверная. Подобное вторичное, а в общем случае n-кратное моделирование может осуществляться теоретическими методами с последующей проверкой получаемых результатов по экспериментальным данным, что характерно для фундаментальных естественных наук. В менее развитых в теоретическом отношении областях знания (биология, некоторые технические дисциплины) вторичная модель обычно включает в себя эмпирическую информацию, которую не охватывают существующие теории.

Процесс построения модели называется моделированием.

В силу многозначности понятия «модель» в науке и технике не существует единой классификации видов моделирования: классификацию можно проводить по характеру моделей, по характеру моделируемых объектов, по сферам приложения моделирования (в технике, физических науках, кибернетике и т. д.). Например, можно выделить следующие виды моделирования:

Информационное моделирование

Компьютерное моделирование

Математическое моделирование

Математико-картографическое моделирование

Молекулярное моделирование

Цифровое моделирование

Логическое моделирование

Педагогическое моделирование

Психологическое моделирование

Статистическое моделирование

Структурное моделирование

Физическое моделирование

Экономико-математическое моделирование

Имитационное моделирование

Эволюционное моделирование

Графическое и геометрическое моделирование

Натурное моделирование

Компьютерное моделирование включает в себя процесс реализации информационной модели на компьютере и исследование с помощью этой модели объекта моделирования — проведение вычислительного эксперимента. С помощью компьютерного моделирования решаются многие научные и производственные вопросы.

Выделение существенных сторон реального объекта и отвлечение от его второстепенных свойств с точки зрения поставленной задачи, позволяет развить аналитические способности. Реализация модели объекта на компьютере требует знания прикладных программ, а также языков программирования.

В практической части я строил модели по следующей схеме:

Постановка задачи (описание задачи, цели моделирования, формализация задачи);

Разработка модели;

Компьютерный эксперимент;

Анализ результатов моделирования.

ПРАКТИЧЕСКАЯ ЧАСТЬ

Моделирование различных процессов и явлений

Работа 1 «Определение удельной теплоемкости вещества».

Цель работы: экспериментальным путем определяеть удельную теплоемкость данного вещества.

Первый этап. Составление математической модели.

Второй этап. Работа с составленной моделью.

Введение значений измеряемых величин.

Введение формул для вычисления значения удельной теплоемкости вещества.

Расчет удельной теплоемкости.

Прикладные программы для компьютерного моделирования реферат

Третий этап. Сравнить табличное и экспериментальное значение теплоемкости.

Описание работы в лабораторном практикуме:

Определение удельной теплоемкости вещества

Обмен внутренней энергией между телами и окружающей средой без совершения механической работы называется теплообменом.

При теплообмене взаимодействие молекул тел, имеющих различную температуру, приводит к передаче энергии от тела с большей температурой к телу с меньшей температурой.

Если между телами происходит теплообмен, то внутренняя энергия всех нагревающихся тел увеличивается на столько, на сколько уменьшается внутренняя энергия остывающих тел.

Порядок выполнения работы:

Компьютерное моделирование на эксельВзвесьте внутренний алюминиевый сосуд калориметра. Налейте в него воды, примерно до половины сосуда и вновь взвесьте, чтобы определить массу воды в сосуде. Измерьте начальную температуру воды в сосуде.

Из общего для всего класса сосуда с кипящей водой, аккуратно, чтобы не обжечь руку, достаньте проволочным крючком металлический цилиндр и опустите его в калориметр.

Следите за повышением температуры воды в калориметре. Когда температура достигнет максимального значения и перестанет повышаться, запишите ее значение в таблицу.

Достаньте цилиндр из сосуда, осушив его фильтровальной бумагой, взвесьте его и запишите массу цилиндра в таблицу.

Из уравнения теплового баланса

c1m1(Tt1)+c2m2(Tt1)=cm(t2T)

вычислите удельную теплоемкость вещества, из которого изготовлен цилиндр.

m1 – масса алюминиевого сосуда;

c1 – удельная теплоемкость алюминия;

m2 — масса воды;

с2 — удельная теплоемкость воды;

t1 — начальная температура воды

m — масса цилиндра;

t2 — начальная температура цилиндра;

Т- общая температура

Работа 2 «Изучение колебаний пружинного маятника»

Цель работы: определить экспериментальным путем жесткость пружины и определить частоту колебаний пружинного маятника. Выяснить зависимость частоты колебаний от массы подвешенного груза.

Первый этап. Составляется математическая модель.

Второй этап. Работа с составленной моделью.

Введение данных в электронную таблицу.

Введите формул для вычисления значения коэффициента жесткости пружины.

Введение в ячейки формул для вычисления теоретического и экспериментального значения частоты колебаний пружинного маятника.

Проведение опытов, подвешивая к пружине грузы различной массы. Результаты занесите в таблицу.

Компьютерное моделирование на эксель

Третий этап. Сделать вывод о зависимости частоты колебаний от массы подвешенного груза. Сравнить теоретическое и экспериментальное значение частот.

Прикладные программы для компьютерного моделирования рефератОписание работы в лабораторном практикуме:

Груз, подвешенный на стальной пружине и выведенный из состояния равновесия, совершает под действием сил тяжести и упругости пружины гармонические колебания. Собственная частота колебаний такого пружинного маятника определяется выражением

где k – жесткость пружины; m – масса тела.

Задача лабораторной работы заключается в том, чтобы экспериментально проверить полученную теоретически закономерность. Для решения этой задачи сначала необходимо определить жесткость k пружины, применяемой в лабораторной установке, массу m груза и вычислить собственную частоту 0 колебаний маятника. Затем, подвесив груз массой m на пружину, экспериментально проверить полученный теоретически результат.

Выполнение работы.

1. Укрепите пружину в лапке штатива и подвесьте к ней груз массой 100 г. Рядом с грузом укрепите вертикально измерительную линейку и отметьте начальное положение груза.

2. Подвесьте к пружине еще два груза по 100 г. и измерьте ее удлинение вызванное действием силы F2Н. Занесите значение силы F и удлинения x в таблицу и вы получите значение жесткости k пружины, вычисленную по формуле

3. Зная величину жесткости пружины, вычислите собственную частоту 0 колебаний пружинного маятника массой 100, 200, 300 и 400 г.

4. Для каждого случая экспериментально определите частоту колебаний маятника. Для этого измерьте интервал времени t, за который маятник совершит 10-20 полных колебаний, и вы получите значение частоты, вычисленное по формуле

где n – число колебаний.

5. Сравните расчетные значения собственной частоты 0 колебаний пружинного маятника с частотой, полученной экспериментально.

Работа 3 «Закон сохранения механической энергии»

Цель работы: экспериментальным путем проверить закон сохранения механической энергии.

Первый этап. Составление математической модели.

Второй этап. Работа с составленной моделью.

Введение данных в электронную таблицу.

Введите формул для вычисления значения потенциальной и кинетической энергии.

Проведение опытов. Результаты занесите в таблицу.

Прикладные программы для компьютерного моделирования реферат

Третий этап. Сравните кинетическую энергию шарика и изменение его потенциальной энергии, сделайте вывод.

Описание работы в лабораторном практикуме

ПРОВЕРКА ЗАКОНА СОХРАНЕНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ.

Рис. 1

В работе необходимо экспериментально установить, что полная механическая энергия замкнутой системы остается неизменной, если между телами действуют только силы тяготения и упругости.

Установка для опыта показана на рисунке 1. При отклонении стержня А от вертикального положения шарик на его конце поднимется на некоторую высоту h относительно начального уровня. При этом система взаимодействующих тел Земля –шарик приобретает дополнительный запас потенциальной энергии ΔEp=mgh.

Если стержень освободить, то он возвратится в вертикальное положение до специального упора. Считая силы трения и изменения потенциальной энергии упругой деформации стержня очень малыми, можно принять, что во время движения стержня на шарик действуют только гравитационные силы и силы упругости. На основании закона сохранения механической энергии можно ожидать, что кинетическая энергия шарика в момент прохождения исходного положения будет равна изменению его потенциальной энергии:

Для определения кинетической энергии шарика необходимо измерить его скорость. Для этого укрепляют прибор в лапке штатива на высоте H над поверхностью стола, отводят стержень с шариком в сторону и затем отпускают. При ударе стержня об упор шарик соскакивает со стержня и продолжает вследствие инерции двигаться со скоростью v в горизонтальном направлении. Измерив дальность полета шарика l при его движении по параболе, можно определить горизонтальную скорость v:

где t-время свободного падения шарика с высоты H.

Определив массу шарика m с помощью весов, можно найти его кинетическую энергию и сравнить ее с изменением потенциальной энергии ΔEp.

В практической части данной работы мной были построены модели физических процессов, а также математические модели, приведены описание лабораторных работ.

В результаты работы, я построил следующие модели:

— физические модели движения тел (Ms Excel, предмет физика)

— равномерного прямолинейного движения, равноускоренного движения (Ms Excel, предмет физика);

— движения тела, брошенного под углом к горизонту (Ms Excel, предмет физика);

— движения тел с учетом силы трения (Ms Excel, предмет физика);

— движения тел с учетом многих сил действующих на тело (Ms Excel, предмет физика);

— определение удельной теплоемкости вещества (Ms Excel, предмет физика);

— колебания пружинного маятника (Ms Excel, предмет физика);

— математическая модель вычисления арифметической и алгебраической прогрессии; (Ms Excel, предмет алгебра);

— компьютерной модели модификационной изменчивости (Ms Excel, предмет биология);

— построение и исследование графиков функций в программе «Живая математика».

После построение моделей, можно сделать вывод: чтобы правильно построить модель, необходимо поставить цель, я придерживался схемы, представленной в теоретической части.

Заключение

Мной были выявлены преимущества использования программы Excel:

а) функциональные возможности программы Excel заведомо перекрывают все потребности по автоматизации обработки данных эксперимента, построению и исследованию моделей; б) обладает понятным интерфейсом; в) изучение Excel предусматривается программами общего образования по информатике, следовательно, возможно эффективное использование Excel; г) данная программа отличается доступностью в изучении и простотой в управлении, что принципиально важно как для меня, как ученика; д) результаты деятельности на рабочем листе Excel (тексты, таблицы, графики, формулы) «открыты» пользователю.

Cреди всех известных программных средств Excel обладает едва ли не самым богатым инструментарием для работы с графиками. Программа позволяет с использованием приемов автозаполнения представлять данные в табличной форме, оперативно их преобразовывать с использованием огромной библиотеки функций, строить графики редактировать их практически по всем элементам, увеличивать изображение какого-либо фрагмента графика, выбирать функциональные масштабы по осям, экстраполировать графики и т.д.

Подводя итог работы, хотелось бы сделать вывод: цель, поставленная в начале этого исследования, была достигнута. Моё исследования показало, что действительно можно смоделировать любой процесс или явление. Гипотеза поставленная мною, верна. В этом я убедился, когда построил достаточное количество таких моделей. Чтобы построить любую модель, нужно придерживаться определенных правил, которые описаны мною в практической части данной работы.

Данное исследование будет продолжено, будут изучены другие программы, позволяющие моделировать процессы.

СПИСОК ЛИТЕРАТУРЫ

Дегтярев Б.И., Дегтярева И.Б., Пожидаев С.В. , Решение задач по физике на программируемых калькуляторах, М., Просвещение , 1991 г.

Демонстрационный эксперимент по физике в старших классах средней школы . Под ред. Покровского А.А., М.Просвещение, 1972 г.

Долголаптев В. Работа в Excel 7.0. для Windows 95.М., Бином, 1995 г

Ефименко Г.Е. Решение задач по экологии с помощью электронных таблиц. Информатика, №5 – 2000г.



Страницы: 1 | 2 | Весь текст




sitemap
sitemap