Научно-исследовательский реферат на тему Числа Фибоначчи



Муниципальное общеобразовательное

учреждение – школа № 28

Научно-исследовательский реферат

На тему: Числа Фибоначчи

Учеников 7 класса

Худякова Сергея Дмитриевича

Шаманаевой Екатерины Алексеевны

Руководитель

Учитель математики

Косенюк Инна Павловна



г. Мытищи

2011

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ ………………………………………………………………

Леонардо Фибоначчи ……………………………………………………

«Книга об абаке» ………………………………………………………

«Практика геометрии» ………………………………………………..

«Цветок» ……………………………………………………………….

«Книга квадратов» …………………………………………………….

Заслуги и достижения Леонардо Фибоначчи ………………………..

Числа Фибоначчи …………………………………………………………

Свойства последовательности Фибоначчи ……………………………

О связи последовательности Фибоначчи и Золотого сечения ………

Последовательность Фибоначчи и пропорции золотого сечения в разных сферах жизни ………………………………………………..

Раковина, закрученная по спирали ………………………………

Растения …………………………………………………………….

Ящерица …………………………………………………………….

Космос ………………………………………………………………

Пирамиды …………………………………………………………..

Последовательность Фибоначчи в строении животных ………..

Пропорции человеческого тела …………………………………..

Числа Фибоначчи психологии ……………………………………

Циклы ряда Фибоначчи …………………………………………………

Закон сохранения цветов радуги ……………………………………….

Платоновы тела и ряд Фибоначчи ………………………………………

ЗАКЛЮЧЕНИЕ ……………………………………………………………

СЛОВАРЬ ………………………………………………………………….

СПИСОК ЛИТЕРАТУРЫ ………………………………………………..

Введение.

Человек стремится к знаниям, пытается изучить Мир, который его окружает. В процессе наблюдений появляются многочисленные вопросы, на которые, соответственно, требуется найти ответы. Человек ищет эти ответы, а находя их, появляются другие вопросы.

Сегодня, в век высоких технологий, изучение ведётся не только на нашей планете Земля, но и за её пределами – во Вселенной.

Но это не значит, что на Земле всё изучено, а наоборот, остаётся огромное количество непонятных и необъяснимых явлений. Но есть «ответы», которые дают объяснение сразу нескольким таким явлениям.

Оказывается, закономерность явлений природы, строение и многообразие живых организмов на нашей планете, всё, что нас окружает, поражая воображение своей гармонией и упорядоченностью, законы мироздания, движение человеческой мысли и достижения науки – всё это можно объяснить последовательностью Фибоначчи.

Извечное стремление человека познать себя и окружающий мир двигало науку вперёд.

Леонардо Фибоначчи

Научная деятельность фибоначчи реферат 7 классО бытие Фибоначчи известно немного. Неизвестна даже точная дата его рождения. Предполагается, что Фибоначчи родился в 1170 г. Его отец был купцом и государственным вельможей, представителем нового класса бизнесменов, порожденных «Коммерческой Революцией».

 Отец Фибоначчи по торговым делам часто бывал в Алжире, и Леонардо изучал там математику у арабских учителей. Позже посетил Египет, Сирию, Византию, Сицилию. Леонардо изучал труды математиков стран веры мусульман (таких как ал-Хорезми и Абу Камил); по арабским переводам он ознакомился также с достижениями античных и индийских математиков. На основе усвоенных им знаний Фибоначчи написал ряд математических трактатов, представляющих собой выдающееся явление средневековой западноевропейской науки.

Тогда Пиза была одним из крупнейших коммерческих средоточий, активно сотрудничавших с исламским Востоком, и отец Фибоначчи энергично торговал в одной из факторий, основанных итальянцами на северном побережье Африки. Благодаря этому ему удалось «устроить» своего сына, будущего великого математика Фибоначчи, в одну из арабских школ, где он и смог получить превосходное для того времени математическое образование. Леонардо изучал труды математиков стран мусульманского вероучения (таких как ал-Хорезми и Абу Камил); по арабским переводам он ознакомился также с достижениями античных и индийских математиков.

«Книга об абаке»

Фибоначчи написал несколько математических трудов: «Liber abaci», «Liber quadratorum», «Practica geometriae». Наиболее известным из них является «Liber abaci»(книга об абаке – счетной доске). Этот труд вышел при жизни Фибоначчи в двух изданиях в 1202 г. и 1228 г.  Эта книга содержит почти все арифметические и алгебраические сведения того времени, изложенные с исключительной полнотой и глубиной. Первые пять глав книги посвящены арифметике целых чисел на основе десятичной нумерации. В VI и VII главе Леонардо излагает действия над обыкновенными дробями. В VIII–X книгах изложены приёмы решения задач коммерческой арифметики, основанные на пропорциях. В XI главе рассмотрены задачи на смешение. В XII главе приводятся задачи на суммирование рядов — арифметической и геометрической прогрессий, ряда квадратов и, впервые в истории математики, возвратного ряда. В XIII главе излагается правило двух ложных положений и ряд других задач, приводимых к линейным уравнениям. В XIV главе Леонардо на числовых примерах разъясняет способы приближённого извлечения квадратного и кубического корней. Наконец, в XV главе собран ряд задач на применение теоремы Пифагора и большое число примеров на квадратные уравнения. «Книга абака» резко возвышается над европейской арифметико-алгебраической литературой XII–XIV вв. разнообразием и силой методов, богатством задач, доказательностью изложения. Последующие математики широко черпали из неё как задачи, так и приёмы их решения.

«Практика геометрии»

«Практика геометрии» (Practica geometriae, 1220) содержит разнообразные теоремы, относящиеся к измерительным методам. Наряду с классическими результатами Фибоначчи приводит свои собственные — например, первое доказательство того, что три медианы треугольника пересекаются в одной точке (Архимеду этот факт был известен, но если его доказательство и существовало, до нас оно не дошло).

«Цветок»

В трактате «Цветок» (Flos, 1225) Фибоначчи исследовал кубическое уравнение x3 + 2×2 + 10x = 20, предложенное ему Иоанном Палермским на математическом состязании при дворе императора Фридриха II. Сам Иоанн Палермский почти наверняка заимствовал это уравнение из трактата Омара Хайяма «О доказательствах задач алгебры», где оно приводится как пример одного из видов в классификации кубических уравнений. Леонардо Пизанский исследовал это уравнение, показав, что его корень не может быть рациональным или же иметь вид одной из квадратичных иррациональностей, встречающихся в X книге Начал Евклида, а затем нашёл приближённое значение корня в шестидесятеричных дробях, равное 1;22,07,42,33,04,40, не указывая, однако, способа своего решения.

«Книга квадратов»

«Книга квадратов» (Liber quadratorum, 1225), содержит ряд задач на решение неопределённых квадратных уравнений. В одной из задач, также предложенной Иоанном Палермским, требовалось найти рациональное квадратное число, которое, будучи увеличено или уменьшено на 5, вновь даёт рациональные квадратные числа.

С представлением «средневековье» в нашем сознании ассоциируется разгул инквизиции, костры, на каковых сжигали ведьм и еретиков, крестовые походы за «телом господним». Наука в те поры явно не была приоритетом. В этих условиях появление книги по математике «Liber abaci» («Книга об абаке»), написанной в 1202 году итальянским математиком Леонардо Пизано Фибоначчи, стало важным событием в научной жизни общества.

Заслуги и достижения Леонардо Фибоначчи

Каково же было содержание написанной Фибоначчи книги-энциклопедии, в которой насчитывалось целых пятнадцать глав? Оказывается, в ней рассматривался весьма обширный круг вопросов:

индусская система нумерации;

правила действий над целыми числами;

дроби и смешанные числа;

разложение чисел на простые множители;

признаки делимости;

учение об иррациональных величинах;

способы приближенного вычисления квадратных и кубических корней;

свойства пропорции;

арифметическая и геометрическая прогрессии;

линейные уравнения и их системы.

Мы остановимся на одной из самых интересных работ Фибоначчи — Числа Фибоначчи (Последовательность Фибоначчи).

Числа Фибоначчи

Числа Фибоначчи  или Последовательность Фибоначчи — числовая последовательность, обладающая рядом свойств.

Но как же Леонардо Фибоначчи вывел свою последовательность? Причиной тому служит одна из задач «Книги об абаке». Она гласит: «Некто поместил пару кроликов в некоем месте, огороженном со всех сторон стеной, чтобы узнать, сколько пар кроликов родится при этом в течение года, если природа кроликов такова, что через месяц пара кроликов производит на свет другую пару, а рождают кролики со второго месяца после своего рождения». Леонардо Фибоначчи решил эту задачу так.

Он рассматривал развитие идеализированной (т.е. биологически нереальной) популяции кроликов, учитывая то, что каждая пара кроликов порождает ещё две пары на протяжении жизни, а затем погибает. Итак:

Имеется пара кроликов (1 новая пара).

В первом месяце первая пара производит на свет другую пару (1 новая пара).

Во втором месяце обе пары кроликов порождают другие пары, и первая пара погибает (2 новые пары).

В третьем месяце вторая пара и две новые пары порождают в общем три новые пары, а старая вторая пара погибает (3 новые пары) и т.д.

Размышляя на эту тему, Фибоначчи выстроил такой ряд чисел: (на экране).

1,1,2,3,5,8,13,21,34,55,89,144,…

Но как оказалось, эта последовательность обладает рядом замечательных свойств.

  

Свойства последовательности Фибоначчи 

 1. Отношение каждого числа к последующему более и более стремится к 0.618 по увеличению порядкового номера. Отношение же каждого числа к предыдущему стремится к 1.618 (обратному к 0.618).

13:21=0,619…

21:34=0,618…

2. При делении каждого числа на следующее за ним, через одно получается число 0.382; наоборот – соответственно 2.618.

55:144=0,382…

144:55=2,618…

3. Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: … 4.235, 2.618, 1.618, 0.618, 0.382, 0.236.

 

О связи последовательности Фибоначчи и Золотого сечения 

Природа как бы решает задачу сразу с двух сторон и складывает полученные результаты. Как только получает в сумме 1, то  осуществляет переход в следующее измерение, где начинает строить все  сначала. Но тогда она и должна строить это золотое сечение по определенному правилу.

Природа не пользуется золотым сечением сразу. Она его получает путем последовательных итераций и  для порождения золотого сечения  пользуется другим рядом, — рядом Фибоначчи.                                                                                 Научная деятельность фибоначчи реферат 7 классНаучная деятельность фибоначчи реферат 7 класс

        Следует сказать, что спираль Фибоначчи может быть двойной. Существуют многочисленные примеры этих двойных спиралей, встречающихся повсюду. Так спирали подсолнухов всегда соотносятся с рядом Фибоначчи. Даже в обычной сосновой шишке можно увидеть эту двойную спираль Фибоначчи. Первая спираль идет в одну сторону, вторая — в другую. Если посчитать число чешуек в спирали, вращающейся в одном направлении, и число чешуек в другой спирали, можно увидеть, что это всегда два последовательных числа ряда Фибоначчи. Может быть восемь в одном направлении и 13 в другом, или 13 в одном и 21 в другом 3.

  В чем разница между спиралями золотого сечения и спиралью Фибоначчи? Спираль золотого сечения идеальна. Она соответствует Первоисточнику гармонии. Эта спираль не имеет ни начала, ни конца. Она бесконечна. Спираль Фибоначчи имеет начало, от которого она начинает “раскрутку”. Это очень важное свойство. Оно позволяет Природе после очередного замкнутого цикла осуществлять строительство новой спирали с “нуля”.

Последовательность Фибоначчи и пропорции золотого сечения в разных сферах жизни

  Важно отметить, что Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи. Просто удивительно, сколько постоянных можно вычислить пpи помощи последовательности Фибоначчи, и как ее члены проявляются в огромном количестве сочетаний. Однако не будет преувеличением сказать, что это не просто игра с числами, а самое важное математическое выражение природных явлений из всех когда-либо открытых.

 Пpиводимые ниже примеры показывают присутствие этой математической последовательности в разных сферах жизни и еще раз доказывают связь с Золотым сечением.

Раковина, закрученная по спирали

Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Форма спирально завитой раковины привлекла внимание Архимеда. Дело в том, что отношение измерений завитков раковины постоянно и равно 1.618. Архимед изучал спираль раковин и вывел уравнение спирали.  Cпираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.

Научная деятельность фибоначчи реферат 7 классНаучная деятельность фибоначчи реферат 7 класс

Растения

Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Cпираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Cовместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения.

«sneezewort’а»

Понаблюдаем за ростом и развитием стеблей и цветов «sneezewort’а». Каждая его новая ветвь, прорастая, дает начало другим ветвям. Рассматривая старые и новые ветви совместно, мы обнаружим число Фибоначчи в каждой из горизонтальных плоскостей.

Цикорий

Cреди придорожных трав растет ничем не примечательное растение — цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий — 38, четвертый — 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.

Научная деятельность фибоначчи реферат 7 класс



Сложноцветные растения

В строении соцветий сложноцветных растений вновь проявляется закономерность Золотого сечения:

Иpис имеет 3 лепестка;

Пpимула имеет 5 лепестков;

Амбpозия полыннолистная имеет 13 лепестков;

Hивяник обыкновенный имеет 34 лепестка;



Астpа имеет 55 и 89 лепестков.

Таким образом, суммарной последовательностью Фибоначчи легко можно трактовать закономерность проявлений Золотых чисел, встречаемых в природе. Эти законы действуют в независимости от нашего знания, от чьего-то желания принимать или не принимать их.

Научная деятельность фибоначчи реферат 7 классНаучная деятельность фибоначчи реферат 7 класс

Ящерица живородящая

В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции — длина ее хвоста так относится к длине остального тела, как 62 к 38.

Научная деятельность фибоначчи реферат 7 класс

 И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы — симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста. Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.

Пьер Kюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды. Закономерности золотой симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

Космос

Из истории астрономии известно, что И. Тициус, немецкий астроном XVIII в., с помощью этого ряда (Фибоначчи) нашел закономерность и порядок в расстояниях между планетами солнечной системы

Однако один случай, который, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Cосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов. Произошло это после смерти Тициуса в начале XIX в.

Научная деятельность фибоначчи реферат 7 класс

Пирамиды

Пирамиды в Египте

Многие пытались разгадать секреты пирамиды в Гизе. В отличие от других египетских пирамид это не гробница, а скоpее неразрешимая головоломка из числовых комбинаций. Замечательные изобpетательность, мастерство, время и труд аpхитектоpов пирамиды, использованные ими пpи возведении вечного символа, указывают на чрезвычайную важность послания, которое они хотели передать будущим поколениям. Их эпоха была дописьменной, доиероглифической и символы были единственным средством записи открытий. Kлюч к геометро-математическому секрету пирамиды в Гизе, так долго бывшему для человечества загадкой, в действительности был передан Геродоту храмовыми жрецами, сообщившими ему, что пирамида построена так, чтобы площадь каждой из ее граней была равна квадрату ее высоты.

Площадь тpеугольника

356 x 440 / 2 = 78320

Площадь квадpата

280 x 280 = 78400

Длина грани пирамиды в Гизе равна 783.3 фута (238.7 м), высота пирамиды -484.4 фута (147.6 м). Длина гpани, деленная на высоту, приводит к соотношению Ф=1.618. Высота 484.4 фута соответствует 5813 дюймам (5-8-13) — это числа из последовательности Фибоначчи. Эти интересные наблюдения подсказывают, что конструкция пирамиды основана на пропорции Ф=1,618. Некоторые современные ученые склоняются к интерпретации, что древние египтяне построили ее с единственной целью — передать знания, которые они хотели сохранить для грядущих поколений. Интенсивные исследования пирамиды в Гизе показали, сколь обширными были в те времена познания в математике и астрологии. Во всех внутренних и внешних пропорциях пирамиды число 1.618 играет центральную роль.

Пирамиды в Мексике

Hе только египетские пирамиды построены в соответствии с совершенными пpопоpциями золотого сечения, то же самое явление обнаружено и у мексиканских пирамид. Возникает мысль, что как египетские, так и мексиканские пирамиды были возведены приблизительно в одно время людьми общего происхождения.

Последовательность Фибоначчи в строении животных

В любой книге в качестве примера показывают раковину наутилуса. Причем во многих изданиях сказано, что это спираль золотого сечения, но это неверно – это спираль Фибоначчи. Можно увидеть совершенство рукавов спирали, но если посмотреть на начало, то он не выглядит таким совершенным. Два самых внутренних ее изгиба фактически равны. Второй и третий изгибы чуть ближе приближаются к «фи». Потом, наконец, получается эта изящная плавная спираль. Вспомните отношения второго члена к первому, третьего ко второму, четвертого к третьему, и так далее. Будет понятно, что моллюск аккурат следует математике ряда Фибоначчи.

Числа Фибоначчи проявляются в морфологии различных организмов. Например, морские звезды. Число лучей у них отвечает ряду чисел Фибоначчи и равно 5, 8, 13, 21, 34, 55. У хорошо знакомого комара — три пары ног, брюшко делится на восемь сегментов, на голове пять усиков — антенн. Личинка комара членится на 12 сегментов. Число позвонков у многих домашних животных равно 55.

Пропорции человеческого тела

Друнвало Мелхиседек в книге «Древняя тайна Цветка Жизни» пишет: «Да Винчи вычислил, что, если нарисовать квадрат вокруг тела, потом провести диагональ от ступней до кончиков вытянутых пальцев, а затем провести параллельную горизонтальную линию (вторую из этих параллельных линий) от пупка к стороне квадрата, то эта горизонтальная линия пересечет диагональ точь-в-точь в пропорции «фи», как и вертикальную линию от головы до ступней. Если считать, что пупок находится в той совершенной точке, а не слегка выше для женщин или чуть ниже для мужчин, то это означает, что тело человека поделено в пропорции «фи» от макушки до ступней.

Если бы эти линии были единственными, где в человеческом теле имеется пропорция фи, это, вероятно, было бы только интересным фактом. На самом деле пропорция фи обнаруживается в тысячах мест по всему телу, а это не просто совпадение. Вот некоторые явственные места в теле человека, где обнаруживается пропорция фи. Длина каждой фаланги пальца находится в пропорции «фи» к следующей фаланге…Та же пропорция отмечается для всех пальцев рук и ног. Если соотнести длину предплечья с длиной ладони, то получится пропорция «фи», так же длина плеча относится к длине предплечья. Или отнесите длину голени к длине стопы и длину бедра к длине голени. Пропорция фи обнаруживается во всей скелетной системе. Она обычно отмечается в тех местах, где что-то сгибается или меняет направление. Она также обнаруживается в отношениях размеров одних частей тела к другим. Изучая это, все время удивляешься».

Научная деятельность фибоначчи реферат 7 класс

Научная деятельность фибоначчи реферат 7 класс Научная деятельность фибоначчи реферат 7 класс

Великий Гете, поэт, естествоиспытатель и художник, мечтал о создании единого учения о форме, образовании и преобразовании органических тел. Это он ввел в научный обиход термин морфология.

Пьер Кюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды.

Числа Фибоначчи в психологии.

Числа фибоначчи и Золотое сечение также используется и в психологии. Например, чтобы выяснить, как развивается механизм творчества, В.В. Клименко воспользовался математикой, а именно законами чисел Фибоначчи и пропорцией «золотого сечения» — законами природы и жизни человека.

Если развернуть в ряд числа Фибоначчи, то получим: 1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89 и т.д. Отношение между числами Фибоначчи составляет 0,618. Развитие человека также происходит соответственно данной пропорции и подчиняется закону ее чисел, разделяя нашу жизнь на этапы с теми или иными доминантами механизма творчества.

Числа Фибоначчи делят нашу жизнь на этапы по количеству прожитых лет:

0 — начало отсчета — ребенок родился. У него еще отсутствуют не только психомоторика, мышление, чувства, воображение, но и оперативный энергопотенциал. Он — начало новой жизни, новой гармонии;

1 — ребенок овладел ходьбой и осваивает ближайшее окружение;

2 — понимает речь и действует, пользуясь словесными указаниями;

3 — действует посредством слова, задает вопросы;

5 — «возраст грации» — гармония психомоторики, памяти, воображения и чувств, которые уже позволяют ребенку охватить мир во всей его целостности;

8 — на передний план выходят чувства. Им служит воображение, а мышление силами своей критичности направлено на поддержку внутренней и внешней гармонии жизни;

13 — начинает работать механизм таланта, направленный на превращение приобретенного в процессе наследования материала, развивая свой собственный талант;

21 — механизм творчества приблизился к состоянию гармонии и делаются попытки выполнять талантливую работу;

34 — гармония мышления, чувств, воображения и психомоторики: рождается способность к гениальной работе;

55 — в этом возрасте, при условии сохраненной гармонии души и тела, человек готов стать творцом. И так далее…

Циклы ряда Фибоначчи

  Законы «золотой пропорции», «золотого сечения» связаны с цифровым рядом Фибоначчи, открытого в 1202 году, является направлением в теории кодирования информации.

          За многовековую историю познания чисел Фибоначчи, образуемый его членами отношения (числа) и их различные инварианты скрупулезно изучены и обобщены, но так полностью и не расшифрованы.

         …Цифровой код цивилизации можно определить с помощью различных методов в нумерологии. Например, с помощью приведения сложных чисел к однозначным (к примеру: 13 есть (1+3)=4, 21 есть (2+3)=5 и т.д.) Проводя подобную процедуру сложения со всеми сложными числами ряда Фибоначчи, получим следующий ряд из 24 цифр:

   1,1,2,3,5,8,4,3,7,1,8,9,8,8,7,6,4,1,5,6,2,8,1,9

1        1                                                     1                          1          75025

2        1                                                     1                          1          75025

3        2                                                     2                          2          150050

4        3                                                     3                          3          225075

5        5                                                     5                          5          375125

6        8                                                     8                          8          600200

7        4        1+3                                       13                        4          975325

8        3        2+1                                       21                        3          1575525

9        7        3+4                                       34                        7          2550850

10      1        5+5=10=1                             55                        1          4126375

11      8        8+9=17=1+7                        89                        8          6677225

12      9        1+4+4                                   144                      9          10803600

13      8        2+3+3                                   233                      8          17480825

14      8        3+7+7=17=1+7=8                377                      8          28284425

15      7        6+1+0=7                               610                      7          45765250

16      6        9+8+7=24=2+4=6                987                      6          74049675

17      4        1+5+9+7=22=2+2=4            1597                    4          119814925

18      1        2+5+8+4=19+1+9=10=1     2584                    1          193864600

19      5        4+1+8+1=14=1+4=5            4181                    5          313679525

20      6        6+7+6+5=24=2+4=6            6765                    6          507544125

21      2        1+0+9+4+6=20=2                10946                  2          821223650

22      8        1+7+7+1+1=17=1+7=8       17711                  8          1328767775

23      1        2+8+6+5+7=28=2+8=10=1 28657                  1          2149991425

24     9        4+6+3+6+8=27+2+7=9       46368                  9          3478759200

 

 далее сколько не преобразовывай числа в цифры, через 24-ре цифры цикл будет последовательно повторяться бесконечное количество раз…

…не является ли набор из 24 цифр своеобразным цифровым кодом развития цивилизации?

Увы, но на этот вопрос ученые не могут пока ответить.

А теперь рассмотрим свойства цветов радуги.

Научная деятельность фибоначчи реферат 7 классЗаконы сохранения цветов радуги

В данной матрице  каждая последующая строка получена из предыдущей с помощью циклического сдвига влево, с перестановкой последнего символа радуги на место Первого («И Последний становится Первым»!)

В этой матрице размерностью 9х9  на главной диагонали стоит Великий предел Радуги («Тьма», как единство белого и фиолетового цветов радуги).



Страницы: 1 | 2 | Весь текст




sitemap
sitemap