Алгебра и начала анализа 10-11 класс по учебнику ША Алимова и др



Согласована Утверждена

Зам. Директора по УВР МОУ «СОШ № 12» Директор МОУ « СОШ № 12»

________________ Г.П.Бурдукова ______________ Л.Г.Лакшина

«___» _______________ 2012 г. приказ от ________ № _______

Департамент образования администрации Тульской области

Комитет по образованию администрации МО Щекинский район

МОУ «СОШ 12» 

 

Рабочая программа

по предмету« Алгебра и начала анализа» в 10 – 11 _классах

учитель: Тимофеева Г.А.

  

2012 / 2013уч.год

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по математике разработана в соответствии с Примерной программой основного общего образования по математике, с учётом требований федерального компонента государственного стандарта общего образования, и основана на авторской программе линии Ш.А. Алимова.

Данная рабочая программа ориентирована на учащихся 10 — 11 классов и реализуется на основе следующих документов:

1.Программа для общеобразовательных учреждений: Алгебра и начало математического анализа для 10-11 классов, составитель Т.А. Бурмистрова, издательство Просвещение, 2009 г., учебник Ш.А. Алимов. Алгебра и начала математического анализа 10 — 11. / Алимов Ш.Ф., Колягин Ю.М., Сидоров Ю.В. и др- М.: Просвещение, 2012г./

2.Стандарт основного общего образования по математике.

Главной целью школьного образования является развитие ребенка как компетентной личности путем включения его в различные виды ценностной человеческой деятельности: учеба, познание, коммуникация, профессионально-трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смыслов жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями. Это определило цели обучения математики:

формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;

овладение математическими знаниями и умениями, необходимыми в повседневной жизни для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углублённой математической подготовки;

воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики.

На основании требований Государственного образовательного стандарта в содержании календарно-тематического планирования предлагается реализовать актуальные в настоящее время компетенгностный, личностно ориентированный, деятельный подходы, которые определяют задачи обучения:

приобретение математических знаний и умений;

овладение обобщенными способами мыслительной, творческой деятельностей;

освоение компетенций: учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной и профессионально-трудового выбора.

Математическое образование в основной школе складывается из следующих содержательных компонентов: арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развивались на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Таким образом, в ходе освоения содержания курса учащиеся получают возможность:

развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

развить логическое мышление и речь — умение логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Цели обучения математике:

овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственные представления, способность к преодолению трудностей;

формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

В ходе преподавания математики в основной школе следует обратить внимание на овладение умениями общеучебного характера, разнообразными способами деятельности, приобретение опыта:

планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска путей и способов решения;

исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение алгебры и начал математического анализа отводится 210часов за 2 года обучения (по 3 часа в неделю в 10 и 11 классе).

При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: Алгебра, Функции, Уравнения и неравенства, Элементы комбинаторики, теории вероятностей, статистики и логики, вводится линия Начала математического анализа. В рамках указанных содержательных линий решаются следующие задачи:

систематизация сведений о числах;

изучение новых видов числовых выражений и формул;

совершенствование практических навыков и вычислительной культуры,

расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;

расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;

знакомство с основными идеями и методами математического анализа.

Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:

Общеучебные цели:

создание условий для формирования умения логически обосновывать суждения, выдвигать гипотезы и понимать необходимость их проверки;

создание условий для формирования умения ясно, точно и грамотно выражать свои мысли в устной и письменной речи;

формирование умения использовать различные языки математики: словесный, символический, графический;

формирование умения свободно переходить с языка на язык для иллюстрации, интерпретации, аргументации и доказательства;

создание условий для плодотворного участия в работе в группе

формирование умения самостоятельно и мотивированно организовывать свою деятельность;

формирование умения применять приобретённые знания и умения в практической деятельности и повседневной жизни для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств при решении задач практического содержания, используя при необходимости справочники;

создание условий для интегрирования в личный опыт новой, в том числе самостоятельно полученной информации.

Общепредметные цели:

овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин (не требующих углубленной математической подготовки), продолжения образования;

интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственные представления, способность к преодолению трудностей;

формирование представлений об идеях и методах математики как универсального языка науки и техники, средстве моделирования явлений и процессов;

воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии через знакомство с историей развития математики, эволюцией математических идей.

Общеучебные умения, навыки и способы деятельности

В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.

На изучение предмета отводится 3 часа в неделю, итого 105 часов за учебный год в каждом классе. В ходе изучения материала планируется проведение в 10 классе 7 контрольных работ, а в 11 классе – 6 контрольных работ по основным темам и по одной итоговой контрольной работе в каждом классе.

Основная форма организации образовательного процесса – классно-урочная система.

Предусматривается применение следующих технологий обучения:

традиционная классно-урочная

лекции

практические работы

элементы проблемного обучения

технологии уровневой дифференциации

здоровье сберегающие технологии

ИКТ

Виды и формы контроля: переводная аттестация, промежуточный, самостоятельные работы, контрольные работы, тесты.

Содержание курса в 10 классе (105 ч)

Повторение курса 7 -9 класса (6 ч)

Числовые и буквенные выражения. Упрощение выражений. Уравнения. Системы уравнений. Неравенства. Элементарные функции.

1..Действительные числа (11 ч)

Целые и рациональные числа. Действительные числа. Бесконечно убывающая геометрическая прогрессия. Арифметический корень натуральной степени. Степень с рациональным и действительным показателями.

Основные цели: формирование представлений о натуральных, целых числах, о признаках делимости, простых и составных числах, о рациональных числах, о периоде, о периодической дроби, о действительных числах, об иррациональных числах, о бесконечной десятичной периодической дроби, о модуле действительного числа; формирование умений определять бесконечно убывающую геометрическую прогрессию, вычислять по формуле сумму бесконечно убывающей геометрической прогрессии; овладение умением извлечения корня п-й степени и применение свойств арифметического корня натуральной степени; овладение навыками решения иррациональных уравнений, используя различные методы решения иррациональных уравнений и свойств степени с любым целочисленным показателем.

В результате изучения темы учащиеся должны:

знать: понятие рационального числа, бесконечной десятичной периодической дроби; определение корня п-й степени, его свойства; свойства степени с рациональным показателем;

уметь: приводить примеры, определять понятия, подбирать аргументы, формулировать выводы, приводить доказательства, развёрнуто обосновывать суждения; представлять бесконечную периодическую дробь в виде обыкновенной дроби; находить сумму бесконечно убывающей геометрической прогрессии; выполнять преобразования выражений, содержащих радикалы; решать простейшие уравнения, содержащие корни п-й степени; находить значения степени с рациональным показателем.

2.Степенная функция (11 ч)

Степенная функция, её свойства и график. Равносильные уравнения и неравенства. Иррациональные уравнения.

Основные цели: формирование представлений о степенной функции, о монотонной функции; формирование умений выполнять преобразование данного уравнения в уравнение-следствие, расширения области определения, проверки корней; овладение умением решать иррациональные уравнения методом возведения в квадрат обеих частей уравнения, проверки корней уравнения; выполнять равносильные преобразования уравнения и определять неравносильные преобразования уравнения.

В результате изучения темы учащиеся должны:

знать: свойства функций; схему исследования функции; определение степенной функции; понятие иррационально уравнения;

уметь: строить графики степенных функций при различных значениях показателя; исследовать функцию по схеме (описывать свойства функции, находить наибольшие и наименьшие значения); решать простейшие уравнения и неравенства стандартными методами; изображать множество решений неравенств с одной переменной; приводить примеры, обосновывать суждения, подбирать аргументы, формулировать выводы; решать рациональные уравнения, применяя формулы сокращённого умножения при их упрощении; решать иррациональные уравнения; составлять математические модели реальных ситуаций; давать оценку информации, фактам, процесса, определять их актуальность.

3.Показательная функция (12 ч)

Показательная функция, её свойства и график. Показательные уравнения. Показательные неравенства. Системы показательных уравнений и неравенств.

Основные цели: формирование понятий о показательной функции, о степени с произвольным действительным показателем, о свойствах показательной функции, о графике функции, о симметрии относительно оси ординат, об экспоненте; формирование умения решать показательные уравнения различными методами: уравниванием показателей, введением новой переменной; овладение умением решать показательные неравенства различными методами, используя свойства равносильности неравенств; овладение навыками решения систем показательных уравнений и неравенств методом замены переменных, методом подстановки.

В результате изучения темы учащиеся должны:

знать: определение показательной функции и её свойства; методы решения показательных уравнений и неравенств и их систем;

уметь: определять значения показательной функции по значению её аргумента при различных способах задания функции; строить график показательной функции; проводить описание свойств функции; использовать график показательной функции для решения уравнений и неравенств графическим методом; решать простейшие показательные уравнения и их системы; решать показательные уравнения, применяя комбинацию нескольких алгоритмов; решать простейшие показательные неравенства и их системы; решать показательные неравенства, применяя комбинацию нескольких алгоритмов; самостоятельно искать и отбирать необходимую для решения учебных задач информацию; предвидеть возможные последствия своих действий.

4.Логарифмическая функция (15 ч)

Логарифмы. Свойства логарифмов. Десятичные и натуральные логарифмы. Логарифмическая функция, её свойства и график. Логарифмические уравнения. Логарифмические неравенства.

Основные цели: формирование представлений о логарифме, об основании логарифма, о логарифмировании, о десятичном логарифме, о натуральном логарифме, о формуле перехода от логарифма с одним основанием к логарифму с другим основанием; формирование умения применять свойства логарифмов: логарифм произведения, логарифм частного, логарифм степени, при упрощении выражений, содержащих логарифмы; овладение умением решать логарифмические уравнения; переходя к равносильному логарифмическому уравнению, метод потенцирования, метод введения новой переменной, овладение навыками решения логарифмических неравенств.

В результате изучения темы учащиеся должны:

знать: понятие логарифма, основное логарифмическое тождество и свойства логарифмов; формулу перехода; определение логарифмической функции и её свойства; понятие логарифмического уравнения и неравенства; методы решения логарифмических уравнений; алгоритм решения логарифмических неравенств;

уметь: устанавливать связь между степенью и логарифмом; вычислять логарифм числа по определению; применять свойства логарифмов; выражать данный логарифм через десятичный и натуральный; применять определение логарифмической функции, её свойства в зависимости от основания; определять значение функции по значению аргумента при различных способах задания функции; решать простейшие логарифмические уравнения, их системы; применять различные методы для решения логарифмических уравнений; решать простейшие логарифмические неравенства.

5. Тригонометрические формулы (23 ч)

Радианная мера угла. Поворот точки вокруг начала координат. Определение синуса, косинуса и тангенса. Знаки синуса, косинуса и тангенса. Зависимость между синусом, косинусом и тангенсом одного и того же угла. Тригонометрические тождества. Синус, косинус и тангенс углов α и α. Формулы сложения.. синус, косинус и тангенс двойного угла.. Формулы приведения. Сумма и разность синусов. Сумма и разность косинусов.

Основные цели: формирование представлений о радианной мере угла, о переводе радианной меры в градусную и наоборот, градусной — в радианную; о числовой окружности на координатной плоскости; о синусе, косинусе, тангенсе, котангенсе, их свойствах; о четвертях окружности; формирование умений упрощать тригонометрические выражения одного аргумента; доказывать тождества; выполнять преобразование выражений посредством тождественных преобразований; овладение умением применять формулы синуса и косинуса суммы и разности, формулы двойного угла для упрощения выражений; овладение навыками использования формул приведения и формул преобразования суммы тригонометрических функций в произведение.

В результате изучения темы учащиеся должны:

знать: понятия синуса, косинуса, тангенса, котангенса произвольного угла; радианной меры угла; как определять знаки синуса, косинуса и тангенса простого аргумента по четвертям; основные тригонометрические тождества; доказательство основных тригонометрических тождеств; формулы синуса, косинуса суммы и разности двух углов; формулы двойного угла; вывод формул приведения;

уметь: выражать радианную меру угла в градусах и наоборот; вычислять синус, косинус, тангенс и котангенс угла; используя числовую окружность определять синус, косинус, тангенс, котангенс произвольного угла; определять знаки синуса, косинуса, тангенса, котангенса по четвертям; выполнять преобразование простых тригонометрических выражений; упрощать выражения с применением тригонометрических формул; объяснять изученные положения на самостоятельно подобранных конкретных примерах; работать с учебником, отбирать и структурировать материал; пользоваться энциклопедией, справочной литературой; предвидеть возможные последствия своих действий.

6. Тригонометрические уравнения (16 ч)

Уравнение cos x = a. Уравнение sin x = a. Уравнение tgx = a. Решение тригонометрических уравнений.

Основные цели: формирование представлений о решении тригонометрических уравнений на числовой окружности, об арккосинусе, арксинусе, арктангенсе, арккотангенсе числа; формирование умений решения простейших тригонометрических уравнений, однородных тригонометрических уравнений; овладение умением решать тригонометрические уравнения методом введения новой переменной, методом разложения на множители; расширение и обобщение сведений о видах тригонометрических уравнений.

В результате изучения темы учащиеся должны:

знать: определение арккосинуса, арксинуса, арктангенса и формулы для решения простейших тригонометрических уравнений; методы решения тригонометрических уравнений;

уметь: решать простейшие тригонометрические уравнения по формулам; решать квадратные уравнения относительно sin, cos, tg и ctg; определять однородные уравнения первой и второй степени и решать их по алгоритму, сводя к квадратным; применять метод введения новой переменной, метод разложения на множители при решении тригонометрических уравнений; аргументировано отвечать на поставленные вопросы; осмысливать ошибки и устранять их; самостоятельно искать и отбирать необходимую для решения учебных задач информацию.

7. Повторение курса алгебры 10 класса ( 11 ч)

Степенная, показательная и логарифмическая функции. Решение показательных, степенных и логарифмических уравнений. Решение показательных, степенных и логарифмических неравенств. Тригонометрические формулы. Тригонометрические тождества. Решение тригонометрических уравнений. Решение систем показательных и логарифмических уравнений. Текстовые задачи на проценты, движение.

Основные цели: обобщить и систематизировать курс алгебры и начала анализа за 10 класс, решая тестовые задания по сборникам тренировочных заданий по подготовке к ЕГЭ; создать условия для плодотворного участия в работе в группе; формировать умения самостоятельно и мотивированно организовывать свою деятельность.

Содержание курса в 11 классе (105 ч)

1.Повторение курса 10 класса (5 ч)

Показательная функция. Логарифмическая функция. Тригонометрические формулы. Степенная функция.

Основные цели: формирование представлений о целостности и непрерывности курса алгебры; овладение умением обобщения и систематизации знаний по основным темам курса алгебры 10 класса; развитие логического, математического мышления и интуиции, творческих способностей в области математики

2. Тригонометрические функции (15ч)

Область определения и множество значений тригонометрических функций. Чётность, нечётность, периодичность тригонометрических функций. Свойства и графики функций y = cos x, y = sin x, y = tg x.

Основные цели: формирование представлений об области определения и множестве значений тригонометрических функций, о нечётной и чётной функциях, о периодической функции, о периоде функции, о наименьшем положительном периоде; формирование умений находить область определения и множество значений тригонометрических функций сложного аргумента, представленного в виде дроби и корня; овладение умением свободно строить графики тригонометрических функций и описывать их свойства;

В результате изучения темы учащиеся должны:

знать: область определения и множество значений элементарных тригонометрических функций; тригонометрические функции, их свойства и графики;

уметь: находить область определения и множество значений тригонометрических функций; множество значений тригонометрических функций вида kf(x) m, где f(x)- любая тригонометрическая функция; доказывать периодичность функций с заданным периодом; исследовать функцию на чётность и нечётность; строить графики тригонометрических функций; совершать преобразование графиков функций, зная их свойства; решать графически простейшие тригонометрические уравнения и неравенства.

3.Производная и её геометрический смысл ( 16 ч )

Производная. Производная степенной функции. Правила дифференцирования. Производные некоторых элементарных функций. Геометрический смысл производной.

Основные цели: формирование понятий о мгновенной скорости, о касательной к плоской кривой, о касательной к графику функции, о производной функции, о физическом смысле производной, о геометрическом смысле производной, о скорости изменения функции, о пределе функции в точке, о дифференцировании, о производных элементарных функций; формирование умения использовать алгоритм нахождения производной элементарных функций простого и сложного аргумента; овладение умением находить производную любой комбинации элементарных функций; овладение навыками составления уравнения касательной к графику функции при дополнительных условиях, нахождения углового коэффициента касательной, точки касания.

В результате изучения темы учащиеся должны:

знать: понятие производной функции, физического и геометрического смысла производной; понятие производной степени, корня; правила дифференцирования; формулы производных элементарных функций; уравнение касательной к графику функции; алгоритм составления уравнения касательной;

уметь: вычислять производную степенной функции и корня; находить производные суммы, разности, произведения, частного; производные основных элементарных функций; находить производные элементарных функций сложного аргумента; составлять уравнение касательной к графику функции по алгоритму; участвовать в диалоге, понимать точку зрения собеседника, признавать право на иное мнение; объяснять изученные положения на самостоятельно подобранных примерах; осуществлять поиск нескольких способов решения, аргументировать рациональный способ, проводить доказательные рассуждения; самостоятельно искать необходимую для решения учебных задач информацию.

4.Применение производной к исследованию функций (17 ч )

Возрастание и убывание функций. Экстремумы функции. Применение производной к построению графиков функций. Наибольшее и наименьшее значения функции. Выпуклость графика. Точки перегиба.

Основные цели: формирование представлений о промежутках возрастания и убывания функции, о достаточном условии возрастания функции, о промежутках монотонности функции, об окрестности точки, о точках максимума и минимума функции, о точках экстремума, о критических точках; формирование умения строить эскиз графика функции, если задан отрезок, значения функции на концах этого отрезка и знак производной в некоторых точках функции; овладение умением применять производную к исследованию функций и построению графиков; овладение навыками исследовать в простейших случаях функции на монотонность, находить наибольшее и наименьшее значения функций, точки перегиба и интервалы выпуклости.

В результате изучения темы учащиеся должны:

знать: понятие стационарных, критических точек, точек экстремума; как применять производную к исследованию функций и построению графиков; как исследовать в простейших случаях функции на монотонность, находить наибольшее и наименьшее значения функции;

уметь: находить интервалы возрастания и убывания функций; строить эскиз графика непрерывной функции, определённой на отрезке; находить стационарные точки функции, критические точки и точки экстремума; применять производную к исследованию функций и построению графиков; находить наибольшее и наименьшее значение функции; работать с учебником, отбирать и структурировать материал.

5.Первообразная и интеграл ( 16 ч )

Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции и интеграл. Вычисление интегралов. Вычисление площадей с помощью интегралов.

Основные цели: формирование представлений о первообразной функции, о семействе первообразных, о дифференцировании и интегрировании, о таблице первообразных, о правилах отыскания первообразных; формирование умений находить для функции первообразную, график которой проходит через точку, заданную координатами; овладение умением находить площадь криволинейной трапеции, ограниченной графиками функций y = f(x) и y = g(x), ограниченной прямыми x = a. х = b, осью Ох и графиком y = h(x).

В результате изучения темы учащиеся должны:

знать: понятие первообразной, интеграла; правила нахождения первообразных; таблицу первообразных; формулу Ньютона Лейбница; правила интегрирования;

уметь: проводить информационно-смысловой анализ прочитанного текста в учебнике, участвовать в диалоге, приводить примеры; аргументировано отвечать на поставленные вопросы, осмысливать ошибки и их устранять; доказывать, что данная функция является первообразной для другой данной функции; находить одну из первообразных для суммы функций и произведения функции на число, используя справочные материалы; выводить правила отыскания первообразных; изображать криволинейную трапецию, ограниченную графиками элементарных функций; вычислять интеграл от элементарной функции простого аргумента по формуле Ньютона Лейбница с помощью таблицы первообразных и правил интегрирования; вычислять площадь криволинейной трапеции, ограниченной прямыми x = a, х = b, осью Ох и графиком квадратичной функции; находить площадь криволинейной трапеции, ограниченной параболами; вычислять путь, пройденный телом от начала движения до остановки, если известна его скорость; предвидеть возможные последствия своих действий; владеть навыками контроля и оценки своей деятельности.

6. Элементы математической статистики,

комбинаторики и теории вероятностей (19ч)

Табличное и графическое представление данных. Числовые характеристики рядов данных. Поочерёдный и одновременны выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биноминальных коэффициентов. Треугольник Паскаля. Элементарные и сложные события. Рассмотрение случаев: вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применение вероятностных методов. Случайные величины. Центральные тенденции. Меры разброса. Решение практических задач по теме «Статистика».

Основные цели: формирование представлений о научных, логических, комбинаторных методах решения математических задач; формирование умения анализировать, находить различные способы решения одной и той же задачи, делать выводы; развитие комбинаторно-логического мышления; формирование представления о теории вероятности, о понятиях: вероятность, испытание, событие (невозможное и достоверное), вероятность событий, объединение и пересечение событий, следствие события, независимость событий; формирование умения вычислять вероятность событий, определять несовместные и противоположные события; овладение умением выполнения основных операций над событиями; овладение навыками решения практических задач с применением вероятностных методов;

В результате изучения темы учащиеся должны:

знать: понятие комбинаторной задачи и основных методов её решения (перестановки, размещения, сочетания без повторения и с повторением); понятие логической задачи; приёмы решения комбинаторных, логических задач; элементы графового моделирования; понятие вероятности событий; понятие невозможного и достоверного события; понятие независимых событий; понятие условной вероятности событий; понятие статистической частоты наступления событий;

уметь: использовать основные методы решения комбинаторных, логических задач; разрабатывать модели методов решения задач, в том числе и при помощи графвого моделирования; переходить от идеи задачи к аналогичной, более простой задаче, т.е. от основной постановки вопроса к схеме; ясно выражать разработанную идею задачи; вычислять вероятность событий; определять равновероятные события; выполнять основные операции над событиями; доказывать независимость событий; находить условную вероятность; решать практические задачи, применяя методы теории вероятности.

7. Обобщающее повторение курса алгебры и начал анализа за 10- 11 классы (17 ч)

Числа и алгебраические преобразования. Уравнения. Неравенства. Системы уравнений и неравенств. Производная функции и ее применение к решению задач. Функции и графики. Текстовые задачи на проценты, движение, прогрессии.

Основные цели: обобщение и систематизация курса алгебры и начал анализа за 10- 11 классы; создание условий для плодотворного участия в групповой работе, для формирования умения самостоятельно и мотивированно организовывать свою деятельность; формирование представлений об идеях и методах математики, о математике как средстве моделирования явлений и процессов; развитие логического и математического мышления, интуиции, творческих способностей; воспитание понимания значимости математики для общественного прогресса.

В рабочей программе изменено соотношение часов на изучение тем и итоговое повторение в сторону уменьшения по отношению к типовой программе. Высвободившиеся часы отведены на обобщающее повторение по каждой теме, работу с тестами и подготовку к итоговой аттестации в форме и по материалам ЕГЭ. Подготовку к экзаменам планируется проводить в системе, начиная с 10 класса

Календарно-тематическое планирование

алгебры и начала анализа 10 класса

Количество часов в неделю: 3 ч

Годовое количество часов: 105ч

Реквизиты программы: рабочая программа составлена на основе Программы для общеобразовательных учреждений: Алгебра и начало математического анализа для 10-11 классов, составитель Т.А. Бурмистрова, издательство Просвещение, 2009 г., учебник Ш.А. Алимов. Алгебра и начала математического анализа 10 — 11. / Алимов Ш.Ф., Колягин Ю.М., Сидоров Ю.В. и др- М.: Просвещение, 2012г.

УМК учащихся: «Алгебра и начала анализа: учеб. для 10-11 кл.общеобраз.учреждений/ Ш.А.Алимов, Ю.М.Колягин, Ю.В.Сидоров и др. – 18 изд.-М.: Просвещение, 2012г.

УМК учителя: «Алгебра и начала анализа: учеб. для 10-11 кл.общеобраз.учреждений/ Ш.А.Алимов, Ю.М.Колягин, Ю.В.Сидоров и др. – 18 изд.-М.: Просвещение, 2012г.

п/п

Дата проведения урока

Наименование разделов и тем уроков

Всего часов

Из них

Лабораторные (практические) работы

Формы контроля

Примечание

Повторение курса 7 -9 класса

6 ч

1

Числовые и буквенные выражения.

2

Упрощение выражений

3

Уравнения. Системы уравнений



Страницы: Первая | 1 | 2 | 3 | ... | Вперед → | Последняя | Весь текст




sitemap sitemap