К.р Теория вероятности



При изучении курса теории вероятностей и математической статистики студентами заочной формы обучения большая роль отводится самостоятельной работе с учебным материалом. Для проверки приобретения студентами практических навыков им предлагается выполнить внеаудиторную контрольную работу (стр. 29)

Работу над контрольной работой рекомендуется построить следующим образом.

Каждый студент решает свой вариант – его номер в экзаменационной ведомости. В заданиях контрольной работы часто необходимо номер варианта, как переменную N подставить в условие, и решать задачу с рассчитанными по номеру варианта данными; иногда индивидуальные данные для каждого варианта предлагаются в виде таблицы после формулировки текстовой части задания.

Сначала рекомендуется разобрать предложенное решение типовой задачи (стр12); убедиться что при самостоятельном решении этой же задачи получается точно такой же ответ, как в подробном решении. При необходимости следует обращаться к теоретической справке и соответствующей теме в учебниках, перечисленных в списке литературы.

Оформлять контрольную работу необходимо в отдельной тетради в клетку. Обязательно указать фамилию и инициалы, номер варианта. Индивидуальные задания можно решать в любой последовательности.

После проверки контрольной работы преподавателем выставляется оценка «зачтено». При наличии ошибок контрольная работа возвращается на доработку студенту.

ЛЕКЦИИ

Определение вероятности события

Классическое определение вероятности события. При классическом определении вероятность события определяется равенством

P(A)=m/n,

где m – число элементарных исходов испытания, благоприятствующих появлению события A; n – число возможных элементарных исходов испытания. Предполагается, что элементарные исходы образуют полную группу и равновозможны.

Геометрическое определение вероятности. Пусть отрезок l составляет часть отрезка L. На отрезке L наудачу поставлена случайная точка. Если предположить, что вероятность попадания точки на отрезок l пропорциональна длине этого отрезка и не зависит от его расположения относительно отрезка L, то вероятность попадания точки на отрезок l определяется равенством

P = Длина l/Длина L

Теорема сложения вероятностей

Теорема сложения вероятностей несовместных событий. Вероятность появления одного из двух несовместных событий, безразлично какого, равна сумме вероятностей этих событий:

Р(А В) = Р(А) + Р(В).

Следствие. Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равна сумме вероятностей этих событий:

Р(А1+А2+…+Аn) = P(A1+ Р(А2) +…+ Р(Аn).

Теорема сложения вероятностей совместных событий. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления

Р(А+В) = Р(А) + Р(В) – Р(АВ).

Теорема может быть обобщена на любое конечное число совместных событии. Например, для трех совместных событий

Р(A+В+С) = Р(А) + Р(В) + Р(С) – Р(АВ) – Р(АС) – Р(ВС) + Р(ABC).

Теорема умножения вероятностей

Вероятность совместного появления двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:

Р(АВ) = Р(А)РA(В).

В частности, для независимых событий

P(АВ) = Р(А)∙Р(В),

т. е. вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий.

Формула полной вероятности

Вероятность события А, которое может наступить лишь при появлении одного из несовместных событий (гипотез) H1, H2, …, Hn образующих полную группу, равна сумме произведений вероятностей каждой из гипотез на соответствующую условную вероятность события A:

где .

Формула Байеса

Пусть событие А может наступить лишь при условии появления одного из несовместных событий (гипотез) H1, H2, …,Hn, которые образуют полную группу событий. Если событие А уже произошло, то вероятности гипотез могут быть переоценены по формулам Байеса

где

Формула Бернулли

Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна p (0 < p < 1), событие наступит ровно m раз (безразлично, в какой последовательности), равна

где q = 1 – p.

Вероятность того, что в n испытаниях событие наступит: а) менее m раз; б) более m раз; в) не менее m раз; г) не более m раз, находят соответственно по формулам:

Pn(0) + Pn(1) +…+ Pn(m – 1);

Pn(m + 1) + Pn(m + 2) +…+ Pn(n);

Pn(m) + Pn(m + 1) +…+ Pn(n);

Pn(0) + Pn(1) +…+ Pn(m).

Формула Пуассона

Если вероятность p наступления события A – постоянна и мала, а число испытаний n – велико и число λ = np – незначительно (будем полагать, что λ = np ≤ 10), то имеет место приближенное равенство:

Локальная и интегральная теорема Муавра-Лапласа

Локальная теорема. Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р (0 < р <1), событие наступит ровно m раз (безразлично, в какой последовательности), приближенно равна (тем точнее, чем больше n)

Здесь

, ,

Таблица значений функции Гаусса для положительных значений х приведена в приложении 1; для отрицательных значений х пользуются этой же таблицей с учетом того, что функция четная, следовательно, .

Интегральная теорема. Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р (0 < р < 1), событие наступит не менее m1 раз и не более m2 раз, приближенно равна

P(m1; m2) = Φ(x) – Φ(x)

Здесь – функция Лапласа,

Таблица значений функции Лапласа для положительных значений х (0 ≤ х ≤ 5) приведена в приложении 2; для значений х > 5 полагают Φ(x) = 0,5. Для отрицательных значений х используют эту же таблицу, учитывая, что функция Лапласа нечетная Ф(–x)= –Ф(x).

На практике, приближенные равенства из локальной и интегральной теоремы Муавра-Лапласа используют при выполнении условия: npq > 20.

Дискретные случайные величины

Законом распределения дискретной случайной величины называют перечень ее возможных значений и соответствующих им вероятностей. Закон распределения дискретной случайной величины X может быть задан в виде таблицы, первая строка которой содержит возможные значения xi, а вторая – соответствующие вероятности рi:

X

x1

x2

xn

p

p1

p2

pn

где .

Закон распределения дискретной случайной величины X может быть также задан аналитически (в виде формулы):

P(X=xi) = φ(xi)

или с помощью функции распределения.

Числовые характеристики дискретных случайных величин

Характеристикой среднего значения случайной величины служит математическое ожидание.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на соответствующие им вероятности:

М(X) = x1p1+ x1p2+…+ xnpn.

Характеристиками рассеяния возможных значений случайной величины вокруг математического ожидания являются дисперсия и среднее квадратическое отклонение.

Дисперсией случайной величины X называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

D(X= M[X  M(X)]2.

Дисперсию удобно вычислять по формуле

D(Х= М(X2 [М(Х)]2.

Средним квадратическим отклонением случайной величины называют квадратный корень из дисперсии:

.

Функция распределения

Функцией распределения называют функцию F(x), определяющую для каждого значения х вероятность того, что случайная величина X примет значение, меньшее х, т. е.

F(x= P(X<x).

Часто вместо термина «функция распределения» используют термин «интегральная функция распределения».

Функция распределения обладает следующими свойствами:

Свойство 1. 0 ≤ F(x) ≤ 1.

Свойство 2. Функция распределения – неубывающая функция:

F(х2≥ F(х1), если x2 > x1.

Следствие 1. Вероятность того, что случайная величина X примет значение, заключенное в интервале (a, b) равна приращению функции распределения на этом интервале:

Р(а < X < b) = F(b F(а).

Следствие 2. Вероятность того, что непрерывная случайная величина X примет одно определенное значение, например х1 равна нулю:

P(X x1) = 0.

Дифференциальная функция распределения

Плотностью распределения вероятностей непрерывной случайной величины называют первую производную от функции распределения:

f(х= F(х).

Часто вместо термина «плотность распределения» используют термины «плотность вероятностей» или «дифференциальная функция».

Вероятность того, что непрерывная случайная величина X примет значение, принадлежащее интервалу (a, b), определяется равенством:

.

Зная плотность распределения, можно найти функцию распределения:

.

Плотность распределения обладает следующими свойствами:

Свойство 1. Плотность распределения неотрицательна, т.е. f(x)≥0.

Свойство 2. . В частности, если все возможные значения случайной величины принадлежат интервалу (а, b), то .

Числовые характеристики непрерывных случайных величин

Математическое ожидание непрерывной случайной величины Х, возможные значения которой принадлежат всей оси Ox, определяется равенством

,

где f(x) – плотность распределения случайной величины X. Предполагается, что интеграл сходится абсолютно.

В частности, если все возможные значения принадлежат интервалу (а, b), то

.

Дисперсия непрерывной случайной величины X, возможные значения которой принадлежат всей оси Ох, определяется равенством

,

или равносильным равенством

.

В частности, если все возможные значения X принадлежат интервалу (a, b), то

.

Среднее квадратическое отклонение непрерывной случайной величины определяется так же, как и для дискретной величины:

.

Нормальный закон распределения

Нормальным называют распределение вероятностей случайной величины X, плотность которого имеет вид

,

где а – математическое ожидание,

– среднее квадратическое отклонение X.

Вероятность того, что нормально распределенная случайная величина X примет значение, принадлежащее интервалу (α; β), равна:

,

где – функция Лапласа.

Генеральная совокупность и выборка

Генеральная совокупность – вся подлежащая изучению совокупность наблюдений, производимых в неизменных условиях.

В математической статистике генеральная совокупность часто понимается как совокупность всех мыслимых наблюдений, которые могут быть произведены при выполнении некоторых условий.

Выборка (выборочная совокупность) – совокупность наблюдений, отобранных случайным образом из генеральной совокупности.

Число наблюдений в совокупности называется ее объемом.

N – объем генеральной совокупности.

n – объем выборки.

Вариационный ряд

Наблюдаемые значения случайной величины х1, х2, …, хk называются вариантами.

Частотой варианты хi называется число ni (i=1,…,k), показывающее, сколько раз эта варианта встречается в выборке.

Частостью (относительной частотой, долей) варианты хi (i=1,…,k) называется отношение ее частоты ni к объему выборки n.

Частоты и частости называют весами.

Накопленной частотой называется количество вариант, значения которых меньше данного х:

Накопленной частостью называется отношение накопленной частоты к объему выборки:

Вариационным рядом (статистическим рядом) – называется последовательность вариант, записанных в порядке возрастания и соответствующих им весов.

Вариационный ряд может быть дискретным (выборка значений дискретной случайной величины) и непрерывным (интервальным) (выборка значений непрерывной случайной величины).

Дискретный вариационный ряд имеет вид:

Когда число вариант велико или признак является непрерывным (случайная величина может принимать любые значения в некотором интервале), составляют интервальный вариационный ряд.

Для построения интервального вариационного ряда проводят группировку вариант – их разбивают на отдельные интервалы:

Число интервалов иногда определяют с помощью формулы Стерджеса:

Затем подсчитывается число вариант, попавших в каждый интервал – частоты ni (или частости ni/n). Если варианта находится на границе интервала, то ее присоединяют к правому интервалу.

Интервальный вариационный ряд имеет вид:

Варианты

Частоты

Эмпирической (статистической) функцией распределения называется функция, значение которой в точке х равно относительной частоте того, что варианта примет значение, меньшее х (накопительной частости для х):

Полигоном частот называют ломанную, отрезки которой соединяют точки с координатами (х1; n1), (х2; n2), …, (хk; nk). Аналогично строится полигон частостей, который является статистическим аналогом многоугольника распределений.

Для непрерывного вариационного ряда полигон можно построить, если в качестве значений х1, х2, …, хk взять середины интервалов.

Интервальный вариационный ряд графически обычно изображают с помощью гистограммы.

Гистограмма – ступенчатая фигура, состоящая из прямоугольников, основаниями которых являются частичные интервалы длины h xi+1 – xi, i = 0,…,k-1, а высоты равны частотам (или частостям) интервалов ni (wi).



Кумулята (кумулятивная кривая) – кривая накопленных частот (частостей). Для дискретного ряда кумулята представляет ломанную, соединяющую точки или , . Для интервального ряда кумулята начинается с точки, абсцисса которой равна началу первого интервала, а ордината – накопленной частоте (частости), равной нулю. Другие точки этой ломанной соответствуют концам интервалов.

Числовые характеристики вариационных рядов

Выборочное среднее

гдеварианты дискретного ряда или середины интервалов интервального ряда;

частоты вариант или интервалов;

частости вариант или интервалов.

Средняя отклонений вариантов от средней равна нулю:

Медианой (Md) вариационного ряда называется значение признака, приходящегося на середину ранжированного ряда наблюдений.

Для дискретного вариационного ряда с нечетным числом членов медиана равна серединному варианту, а для ряда с четным числом членов – полусумме двух серединных вариантов.

Для интервального вариационного ряда:

Модой (Mo) вариационного ряда называется варианта, которой соответствует наибольшая частота.

Для дискретного вариационного ряда мода находится по определению.

Для интервального вариационного ряда:

Абсолютные показатели вариации



Страницы: Первая | 1 | 2 | 3 | ... | Вперед → | Последняя | Весь текст




sitemap
sitemap