История возникновения отрицательных чисел



Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №8

г. Ельца Липецкой области

История возникновения

отрицательных чисел

Автор: Тельнов Денис,

ученик 6 а класса

Руководитель: Кобзева Н.А.,

учитель математики

2013 г.

Содержание:

Введение________________________________ стр. 3

Основная часть

Что такое «число»?________________________ стр.3

Отрицательные числа в Египте________________ стр.5

Отрицательные числа в Древней Азии___________ стр. 5

Отрицательные числа в Европе_________________ стр. 6

Современное истолкование отрицательных чисел__ стр.7

Заключение__________________________________ стр.8

Cписок литературы____________________________ стр. 9

Мир чисел очень загадочен и интересен. Числа очень важны в нашем мире. Я хочу узнать как можно больше о происхождении чисел, об их значении в нашей жизни. Как их применять и какую роль они играют в нашей жизни?

В этом году на уроках математики мы начали изучать тему «Положительные и отрицательные числа». У меня возник вопрос, когда возникли отрицательные числа, в какой стране, какие ученые занимались этим вопросом. В Википедии я прочитала, что отрицательное число — элемент множества отрицательных чисел, которое (вместе с нулём) появилось в математике при расширении множества натуральных чисел. Цель расширения: обеспечить выполнение операции вычитания для любых чисел. В результате расширения получается множество (кольцо) целых чисел, состоящее из положительных (натуральных) чисел, отрицательных чисел и нуля.

В итоге я решила исследовать историю возникновения отрицательных чисел.

Целью данной работы является исследование истории возникновения отрицательных чисел.

Объект исследования — отрицательные числа

Определение понятия числа

В современном мире человек постоянно пользуется числами, даже не задумываясь об их происхождении. Без знания прошлого нельзя понять настоящее. Число является одним из основных понятий математики. Понятие числа развивалось в тесной связи с изучением величин; эта связь сохраняется и теперь. Во всех разделах современной математики приходится рассматривать разные величины и пользоваться числами. Число — абстракция, используемая для количественной характеристики объектов. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа изменялось и обогащалось и превратилось в важнейшее математическое понятие.

Существует большое количество определений понятию «число».

Первое научное определение числа дал Евклид в своих «Началах», которое он, очевидно, унаследовал от своего соотечественника Эвдокса Книдского (около 408 – около 355 гг. до н. э.): «Единица есть то, в соответствии с чем каждая из существующих вещей называется одной. Число есть множество, сложенное из единиц». Так определял понятие числа и русский математик Магницкий в своей «Арифметике» (1703 г.). Еще раньше Евклида Аристотель дал такое определение: «Число есть множество, которое измеряется с помощью единиц». В своей «Общей арифметике» (1707 г) великий английский физик, механик, астроном и математик Исаак Ньютон пишет: «Под числом мы подразумеваем не столько множество единиц, сколько абстрактное отношение какой-нибудь величины к другой величине такого же рода, взятой за единицу. Число бывает трех видов: целое, дробное и иррациональное. Целое число есть то, что измеряется единицей; дробное – кратной частью единицы, иррациональное – число, не соизмеримое с единицей».

Мариупольский математик С.Ф.Клюйков также внес свой вклад в определение понятия числа: «Числа – это математические модели реального мира, придуманные человеком для его познания». Он же внес в традиционную классификацию чисел так называемые «функциональные числа», имея в виду то, что во всем мире обычно именуют функциями.



Натуральные числа возникли при счете предметов. Об этом я узнала в 5 классе. Затем я узнала, что потребность человека измерять величины не всегда выражается целым числом. После расширения множества натуральных чисел до дробных стало возможным делить любое целое число на другое целое число (за исключением деления на нуль). Появились дробные числа. Вычитать же целое число из другого целого числа, когда вычитаемое больше уменьшаемого, долгое время казалось невозможным. Интересным для меня оказался тот факт, что долгое время многие математики не признавали отрицательных чисел, считая, что им не соответствуют какие-либо реальные явления.

Отрицательные числа в Египте

Однако, не смотря на такие сомнения, правила действий с положительными и отрицательными числами были предложены уже в III веке в Египте. Введение отрицательных величин впервые произошло у Диофанта. Он даже использовал специальный символ для них (сейчас мы в этом качестве используем знак «минус»). Правда, ученые спорят, обозначал ли символ Диофанта именно отрицательное число или просто операцию вычитания, потому что у Диофанта отрицательные числа не встречаются изолированно, а только в виде разностей положительных; и в качестве ответов в задачах он рассматривает только рациональные положительные числа. Но в то же время Диофант употребляет такие обороты речи, как «Прибавим к обеим сторонам отрицательное», и даже формулирует правило знаков: «Отрицательное, умноженное на отрицательное, дает положительное, тогда как отрицательное, умноженное на положительное, дает отрицательное» (то, что сейчас обычно формулируют: «Минус на минус дает плюс, минус на плюс дает минус»).

(–) (–) = (+), (–) (+) = (–).

Отрицательные числа в Древней Азии

Положительные количества в китайской математике называли «чен», отрицательные – «фу»; их изображали разными цветами: «чен» — красным, «фу» — черным. Такой способ изображения использовался в Китае до середины XII столетия, пока Ли Е не предложил более удобное обозначение отрицательных чисел – цифры, которые изображали отрицательные числа, перечеркивали черточкой наискось справа налево. Индийские ученые, стараясь найти и в жизни образцы такого вычитания, пришли к толкованию его с точки зрения торговых расчетов.

Если купец имеет 5000 р. и закупает товара на 3000 р., у него остается 5000 — 3000 = 2000, р. Если же он имеет 3000 р., а закупает на 5000 р., то он остается в долгу на 2000 р. В соответствии с этим считали, что здесь совершается вычитание 3000 — 5000, результатом же является число 2000 с точкой наверху, означающее «две тысячи долга».

Толкование это носило искусственный характер, купец никогда не находил сумму долга вычитанием 3000 — 5000, а всегда выполнял вычитание 5000 — 3000. Кроме того, на этой основе можно было с натяжкой объяснить лишь правила сложения и вычитания «чисел с точками», но никак нельзя было объяснить правила умножения или деления.

В V-VI столетиях отрицательные числа появляются и очень широко распространяются в индийской математике. В Индии отрицательные числа систематически использовали в основном так, как это мы делаем сейчас. Индийские математики используют отрицательные числа с VII в. н. э.: Брахмагупта сформулировал правила арифметических действий с ними. В его произведении мы читаем: « имущество и имущество есть имущество, сумма двух долгов есть долг; сумма имущества и нуля есть имущество; сумма двух нулей есть нуль… Долг, который отнимают от нуля, становится имуществом, а имущество – долгом. Если нужно отнять имущество от долга, а долг от имущества, то берут их сумму».

Индийцы называли положительные числа «дхана» или «сва» (имущество), а отрицательные – «рина» или «кшайя» (долг). Впрочем, и в Индии с пониманием и принятием отрицательных чисел были проблемы.

Отрицательные числа в Европе

Не одобряли их долго и европейские математики, потому что истолкование «имущество-долг» вызывало недоумения и сомнения. В самом деле, как можно «складывать» или «вычитать» имущества и долги, какой реальный смысл может иметь «умножение» или «деление» имущества на долг? (Г.И. Глейзер, История математики в школе IV-VI классы. Москва, Просвещение, 1981)

Вот почему с большим трудом завоевали себе место в математике отрицательные числа. В Европе к идее отрицательного количества достаточно близко подошел в начале XIII столетия Леонардо Фибоначчи Пизанский, однако в явном виде отрицательные числа применил впервые в конце XV столетия французский математик Шюке. Автор рукописного трактата по арифметике и алгебре «Наука о числах в трёх частях». Символика Шюке приближается к современной (Математический энциклопедический словарь. М., Сов. энциклопедия, 1988)

Современное истолкование отрицательных чисел

В 1544 году немецкий математик Михаил Штифель впервые рассматривает отрицательные числа как числа, меньшие нуля (т. е. « меньшие, чем ничто »). С этого момента отрицательные числа рассматриваются уже не как долг, а совсем по-новому. Сам Штифель писал: «Нуль находится между истинными и абсурдными числами…» (Г.И. Глейзер, История математики в школе IV-VI классы. Москва, Просвещение, 1981)

После этого Штифель полностью посвящает свою работу математике, в которой он был гениальным самоучкой. Один из первых в Европе после Николы Шюке начал оперировать отрицательными числами.

Знаменитый французский математик Рене Декарт в «Геометрии» (1637 год) описывает геометрическое истолкование положительных и отрицательных чисел; положительные числа изображаются на числовой оси точками, лежащими вправо от начала 0, отрицательные – влево. Геометрическое истолкование положительных и отрицательных чисел привело к более ясному пониманию природы отрицательных чисел, способствовало их признанию.

Почти одновременно со Штифелем защищал идею отрицательных чисел Р. Бомбелли Раффаэле (около 1530—1572), итальянский математик и инженер, переоткрывший сочинение Диофанта.

Бомбелли и Жирар, напротив, считали отрицательные числа вполне допустимыми и полезными, в частности, для обозначения недостачи чего-либо. Современное обозначение положительных и отрицательных чисел со знаками « + » и « — » применил немецкий математик Видман.

Выражение «ниже, чем ничего» показывает, что Штифель и некоторые другие мысленно воображали положительные и отрицательные числа точками на вертикальной шкале (вроде шкалы термометра). Развитое затем математиком А. Жираром представление об отрицательных числах как о точках на некоторой прямой, располагающихся по другую сторону от нуля, чем положительные, оказалось решающим в обеспечении этим числам прав гражданства, особенно в результате развития метода координат у П. Ферма и Р. Декарта.

Вывод

В своем работе я исследовала историю возникновения отрицательных чисел. В ходе исследования я сделала вывод:

Современная наука встречается с величинами такой сложной природы, что для их изучения приходится изобретать все новые виды чисел.

При введении новых чисел большое значение имеют два обстоятельства:

а) правила действий над ними должны быть полностью определены и не вели к противоречиям;

б) новые системы чисел должны способствовать или решению новых задач, или усовершенствовать уже известные решения.

К настоящем у времени существует семь общепринятых уровней обобщения чисел: натуральные, рациональные, действительные, комплексные, векторные, матричные и трансфинитные числа. Отдельными учеными предлагается считать функции функциональными числами и расширить степень обобщения чисел до двенадцати уровней.

Все эти множества чисел я постараюсь изучить.

Список литературы

Большая математическая энциклопедия. Якушева Г.М. и др.

М.: Филол. О-во «СЛОВО»: ОЛМА-ПРЕСС, 2005.

Возникновение и развитие математической науки: Кн. Для учителя. – М.: Просвещение, 1987.

Энциклопедия для детей. Т.11. Математика

Глав. ред. М. Д. Аксёнова. – М.: Аванта+,1998.

История математики в школе , IV-VI классы. Г.И. Глейзер, Москва, Просвещение, 1981.

Википедия. Свободная энциклопедия.

Математический энциклопедический словарь. М., Сов. энциклопедия, 1988.








sitemap
sitemap