Исследовательская работа Удивительные числа



Муниципальное общеобразовательное учреждение

Снежногорская средняя общеобразовательная школа

Учебно-исследовательская работа

«Удивительные числа»

выполнила: Тембо Валя, ученица 6 класса.

руководитель: Максиян Ольга Валерьевна, учитель математики

Ноябрь 2011г.

Цель работы: доказать, что в математике есть удивительные числа

Задачи:

Выделить виды удивительных чисел среди натуральных чисел;

Установить свойства и закономерности удивительных чисел.

Методы исследования:

Работа с учебной и научно-популярной литературой, ресурсами сети Интернет.

Систематизация данных.

Предмет исследования: натуральные числа.

Актуальность

Числа окружают человека на протяжении всей его жизни. Числа бывают разные: натуральные, дробные и многие другие, о которых я, ученица 6 класса, еще не знаю. История чисел увлекательна и загадочна. Человечеству удалось установить целый ряд законов и закономерностей мира чисел, разгадать кое-какие тайны и использовать свои открытия в повседневной жизни. Без замечательной науки о числах – математики – немыслимо сегодня ни прошлое, ни будущее. А сколько ещё неразгаданного! В своей работе я раскрываю мир удивительных чисел, о которых в школьном учебнике математики нет никаких сведений.

Введение

Число является одним из основных понятий математики. Существует большое количество определений понятию «число». О числах первый начал рассуждать Пифагор. Пифагору принадлежит высказывание «Всё прекрасно благодаря числу». По его учению число 2 означало гармонию, 5 – цвет, 6 –холод, 7 – разум, здоровье, 8 –любовь и дружбу. Первое научное определение числа дал Евклид в труде «Начала»: «Единица есть то, в соответствии, с чем каждая из существующих вещей называется одной. Число есть множество, сложенное из единиц». Так определял понятие числа и русский математик Магницкий в учебнике «Арифметика» (1703 г.).Считается, что термин «натуральное число» впервые применил римский государственный деятель, философ, автор трудов по математике и теории музыки Боэций (480 – 524 гг.), но еще греческий математик Никомах из Геразы говорил о натуральном, то есть природном ряде чисел. Понятием «натуральное число» в современном его понимании последовательно пользовался выдающийся французский математик, философ-просветитель Даламбер (1717-1783 гг.).

Первоначальные представления о числе появились в эпоху каменного века, при переходе от простого собирания пищи к ее активному производству. Числовые термины тяжело зарождались и медленно входили в употребление. Сто веков понадобилось, чтобы выстроить ряд самых коротких натуральных чисел от единицы до бесконечности:1, 2, … ∞ . Натуральных потому, что ими обозначались реальные неделимые объекты: люди, животные, вещи… Самое трудное было придумать нуль. Его придумали на много веков позже, чем другие цифры. Первая, точно датированная запись, в которой встречается знак нуля, относится к 876 г.

Фигурные числа

Давным-давно, помогая себе при счете камушками, люди обращали внимание на правильные фигуры, которые можно выложить из камушков. Можно просто класть камушки в ряд: один, два, три. Если класть их в два ряда, чтобы получались прямоугольники, то получаются все четные числа. Можно выкладывать камни в три ряда: получатся числа, делящиеся на три.

 Фигурные числа — общее название чисел, связанных с той или иной геометрической фигурой.

Различают следующие виды фигурных чисел:

Линейные числа — числа, не разлагающиеся на множители, то есть их ряд совпадает с рядом простых чисел, дополненным единицей: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, …

Плоские числа — числа, представимые в виде произведения двух сомножителей, то есть составные: 4, 6, 8, 9, 10, 12, 14, 15, …

Телесные числа — числа, представимые произведением трёх сомножителей: 8, 12, 16, 18, 20, 24, 27, 28, …

Многоугольные числа

Выкладывая различные правильные многоугольники, можно получить разные классы многоугольных чисел. Предположительно от фигурных чисел возникло выражение: «Возвести число в квадрат или в куб».

Последовательность треугольных чисел: 1, 3, 6, 10, 15, 21, 28, 36, 4 и т.д. (1, 1+2=3, 1+2+3=6, 1+2+3+4=10, 1+2+3+4+5=15 и т. д.)

Квадратные числа представляют собой произведение двух одинаковых натуральных чисел, то есть являются полными квадратами: 1, 4, 9, 16, 25, 36, и т.д. (1+3=4, 1+3+5=9, 1+3+5+7=16).

Пятиугольные числа 1, 5, 12, 22, 35, 51, 70, 92, 117, 145

Пирамидальные числа возникают при складывании круглых камушков горкой так, чтобы они не раскатывались. Получается пирамида. Каждый слой в такой пирамиде — треугольное число. Наверху один камушек, под ним — 3, под теми — 6 и т.д.: 1, 1+3=4, 1+3+6=10, 1+3+6+10=20, …

Кубические числа возникают при складывании кубиков: 1, 2·2·2=8, 3·3·3=27, 4·4·4=64, 5·5·5=125… и так далее.

Дружественные числа

Дружественные числа – это два натуральных числа, для которых сумма всех делителей первого числа (кроме него самого) равна второму числу и сумма всех делителей второго числа (кроме него самого) равна первому числу. История дружественных чисел теряется в глубине веков. Эти удивительные числа были открыты последователями Пифагора. Правда пифагорейцы знали только одну пару дружественных чисел – 220 и 284. Проверим эту пару чисел на свойство дружественных чисел:

1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284,

1 + 2 + 4 + 71 + 142 = 220.

Долго считалось, что следующую пару дружественных чисел 17296 и 18416 открыл в 1636 году знаменитый французский математик Пьер Ферма. Но недавно в одном из трактатов арабского ученого Ибн аль-Банны (1256-1321) были найдены строки: «Числа 17296 и 18416 являются дружественными. Аллах всеведущ».

Дружественные числа открытые Ибн аль-Банны и Ферма 17296 и 18416.

Леонард Эйлер открыл 59 пар дружественных чисел, среди которых были и нечетные числа, например, 9773505 и 11791935. Он предложил пять способов отыскания дружественных чисел. Эту работу продолжили математики следующих поколений. В настоящее время известно около 1100 пар дружественных чисел. В 1867 году шестнадцатилетний итальянец Никколо Паганини потряс математический мир сообщением о том, что числа 1184 и 1210 дружественные! Эту пару, ближайшую к 220 и 284, проглядели все знаменитые математики, изучавшие дружественные числа.

Пару чисел 220 и 284 стали считать символом дружбы. В Средние века имели хождение талисманы с выгравированными на них числами 220 и 284, якобы способствующими укреплению любви.

Совершенные числа

Совершенным называется число, равное сумме всех своих делителей (включая 1, но исключая само число).

Первым прекрасным совершенным числом, о котором знали математики Древней Греции, было число «6». На шестом месте, на званном пиру, возлежал самый уважаемый, самый почетный гость. В библейских преданиях утверждается, что мир был создан в шесть дней, ведь более совершенного числа, среди совершенных чисел, чем «6», нет, поскольку оно первое среди них.

Рассмотрим число 6. Число имеет делители 1, 2, 3 и само число 6. Если сложить делители, отличные от самого числа 1 + 2 + 3 то мы получим 6. Значит, число 6 дружественно самому себе и является первым совершенным числом.

Следующим совершенным числом, известным древним, было «28». Мартин Гарднер усматривал в этом числе особый смысл. По его мнению, Луна обновляется за 28 суток, потому что число «28» – совершенное. В Риме в 1917 году при подземных работах было открыто странное сооружение: вокруг большого центрального зала расположены двадцать восемь келий. Это было здание неопифагорейской академии наук. В ней было двадцать восемь членов. До Евклида были известны только эти два совершенных числа, и никто не знал, существуют ли другие совершенные числа и сколько таких чисел вообще может быть.

Благодаря своей формуле, Евклид сумел найти еще два совершенных числа: 496 и 8128.

Почти полторы тысячи лет люди знали только четыре совершенных числа, и никто не знал, могут ли существовать еще числа, которые можно представить в евклидовской формуле, и никто не мог сказать, возможны ли совершенные числа, не удовлетворяющие формуле Евклида.

Формула Евклида позволяет без труда доказывать многочисленные свойства совершенных чисел.

– Все совершенные числа треугольные. Это значит, что, взяв совершенные число шаров, мы всегда сможем сложить из них равносторонний треугольник.

– Все совершенные числа, кроме 6, можно представить в виде частичных сумм ряда кубов последовательных нечетных чисел 13 + 33 + 53

– Сумма обратных всем делителям совершенного числа, включая его самого, всегда равна 2.

Кроме того, совершенство чисел тесно связано с двоичностью. Числа: 4=2×2, 8 = 2· 2· 2, 16 = 2 · 2 · 2 · 2 и т.д. называются степенями числа 2 и могут быть представлены в виде 2n, где n – число перемноженных двоек.

– Все совершенные числа (кроме 6) заканчиваются в десятичной записи на 16, 28, 36, 56, 76 или 96.

Заключение

Среди всех интересных натуральных чисел, издавна изучаемых математиками, особое место занимают совершенные и близко связанные с ними дружественные числа. Из огромного многообразия натуральных чисел ученые выделили дружественные и совершенные числа, обладающие рядом очень интересных свойств. Мир полон тайн и загадок. Но разгадать их могут только пытливые. Современная наука встречается с величинами такой сложной природы, что для их изучения приходится изобретать все новые виды чисел. И мне бы хотелось продолжить изучение чисел, ведь я только знаю натуральные числа.

Литература

Я. Познаю мир. Детская энциклопедия: Математика/ Я 11 Авт.-сост. А.П. Савин и др.: — М.: ООО «Издательство АСТ», 2001.

Г.И.Гейзер. История математики в школе. Пособие для учителей. – М.: Просвещение, 1981.

И.Я.Депман. Н.Я.Виленкин. За страницами учебника математики. Пособие для учащихся 5-6 классов. Издательство»Просвещение» 1989.

Е.Карпеченко Тайны чисел .Математика /Прил. К газете «Первое сентября» №13 2007.

Internet ресурсы



sitemap
sitemap